MIL-I-631D INTERIM AMENDMENT - II (SHIPS) 6 November 1962 SUPERSEDING INTERIM AMENDMENT - I (SHIPS) 9 March 1962

MILITARY SPECIFICATION

INSULATION, ELECTRICAL, SYNTHETIC-RESIN COMPOSITION, NONRIGID

(This interim amendment forms a part of Military Specification MIL-I-631D dated 15 November 1961. It was developed by the Department of the Navy, Bureau of Ships, for immediate use pending the inclusion of its contents in a coordinated document.)

Page 2, paragraph 2.2: Delete reference to "D150" and "D876" and substitute:

"D150 - Methods of Test for A-C Capacitance, Dielectric Constant and Loss Characteristics of Electrical Insulating Materials. "D876 - Methods of Testing Nonrigid Vinyl Chloride Polymer Tubing."

Page 3, paragraph 3.1.1.1, first sentence: Delete and substitute "Film is defined as material with a thickness of 0.010 inch or less, in widths greater than 3 inches."

Page 4, table I, column 9: For dielectric strength, delete "3,500" through "85" inclusive and substitute "3,500", "3,200", "3,000", "80", "80", and "85". For elongation, insert "50" between "50" and "35".

Pages 5 and 6, table II: Delete and substitute:

FSC 5970

"Table II. - Property values of synthetic-resin electrical insulation-forms S and T (greater than 0.002 inch in thickness).

Dissipation factor (form S only) At 1 kilo-cycle At 1 mega-cycle	Dielectric strength 1/	Dielectric strength 1/	Dielectric strength 1/	Property to be tested	
4.6.3			4. 6. 2	Test refer- ence	
[C-96/23/0 [C-96/23/96 [C-96/23/0 [C-96/23/96	C-96/23/96	C-96/23/96	C-96/23/0	Conditioning procedure (see 4.4)	
Maximum Maximum	Percent of dry value obtained on test (min.)	Percent of dry value obtained on test (min.)	Volts per mil (minimum)	Unit of value	
	Inch 0.003 .005 .0075 .010	All thick- nesses	Inch 0.003 0.005 0.005 0.010 0.012 0.014 0.016 0.025 0.025 0.040 0.050	Nominal thick- ness	
Natural Other colors colors colors 0.0025 0.0040 0.0025 0.006 0.0025 0.0008 0.0040 0.0040 0.0040 0.0040		75	3,100 2,400 1,800 1,600 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100 1,100	Value A	
0.02 .03 .045		8 5	1,900 1,550 1,300 1,200 1,200 1,000 900 820 760 640 550	Value required for B C	
0.035 .070 .05		75	1,900 1,550 1,150 1,150 1,150 1,150 1,160 760 760 760 620 550	d for each	
0.015 0.03 .028		55	2,600 2,150 1,800 1,550 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050	type D	
		90	1,200 1,070 960 920 940 740 740 600 530	of mat	
0.14		90	1,045 1,045	material E F Grade a	
0.006 .0065 .020	90 90 90	90	2,450 2,000 1,600 1,500 1,400	Q	

"Table II. —Property values of synthetic-resin electrical insulation—forms S and T (greater than 0.002 inch in thickness) (cont'd)

Lengthwise shrinkage	Softening tempera- ture (pen- etration)	Percent return	Elongation	Elongation	Tensile strength	Volume resistivity (form S only)	Dielectric constant (form S only) At 1 kilo- cycle At 1 mega- cycle	Property to
4. 6. 8	4.6.7	4.6.5.2		4.6.5.1	4.6.5.1	4. 6. 4. 1	4, 6, 3	Test refer- ence
E-2/100 E-2/150	C-96/23/50	C-96/23/50	E-400/130	C-96/23/50 C-96/23/50 E-400/100	C-96/23/50	C-96/23/0 C-96/23/96	[C-96/23/0] [C-96/23/96] [C-96/23/0] [C-96/23/96]	Conditioning procedure (see 4.4)
Percent (max.) Percent (max.)	Degrees centigrade (min,)	Percent (min.)	Percent change (max.)	Percent (min.) (Percent (max.) Percent change (max.)	P. s. i. (min.)	Ohm-centi- meters (min.)	Maximum Maximum	Unit of value
	:	:	. 010	.010	. 014	:		Nominal thick- ness
2.0	65	:		 	1,400	10 ¹⁷ 10 ¹⁶	Natural O colors co	А
							Other colors [2.5] [2.7] [2.7]	Value 1
3. 0	120			25 100	5,000	10 ¹³ 10 ¹²	5.00	equire B
3.0	160	:		10 50	6,000	1013 1010	7.4.5 0 \(\omega \) 7.5	Value required for each B C
2.0	110	:	: : :	25 100	3,500	1014 1212	5.00	ach type D
5.0	120	:		15	3,500	10 ¹³ 10 ¹²	· · 65 · · 00	ဋ္ဌ
10.0	. 75	80		200 450 35	1,800	10 ¹¹ 10 ¹⁰	7.0	material E F Grade a
5. 0	200	:	25 25 30	100	17, 000 16, 000	1015		- Ω

MIL-I-631D INTERIM AMENDMENT - II (SHIPS)

Page 10, table IV, column 2: Opposite ". 0015" insert ". 0004".

Page 10, table V: Opposite ".010" insert ".0016" under type G. Between ".012" and ".016" insert ".014" under nominal thickness and ".0020" under type G.

Page 11, table VII: Delete and substitute:

"Table VII - Tubing lengths.

Nominal inside diameter	Minimum length Feet		
Inch			
0.022 - 0.027	1,200		
.034059	1,000		
. 066 166	500		
.186330	200		
.360600	100		
. 600 and over	50		

Page 14, paragraph 4.3.1: Delete and substitute:

"4.3.1 Samples. - Separate samples for each type, form, and subform of material for which approval is requested shall be furnished in sizes and quantities shown in table X (see 4.3.2.2). Qualification for forms U_a and U_b may be obtained separately because of the large number of sizes in these subforms. The same applies to both subforms (T_f and T_g) under form T. If all of the thicknesses or sizes shown in table X are not tested, the qualification will apply only to the thickness or size tested."

Preparing activity:
Navy - Ships
(Project 5970-N043Sh)