During testing of Apollo GAN System 214 in Spacecraft 110 at KSC on November 9 an anomaly occurred which manifested itself in gimbal motion with the application of 28VDC to the OSS bus. The +28VDC ISS bus was off during this period, yet monitoring equipment measured a DC level of 6.1 volts on the ISS bus.

The cause was later isolated to a short between pins 40 and 41 of connector 56-21 in the "A" Harness. This resulted in the OSS 28 volt 1/8 800 cycle supply being connected in parallel with the ISS 28 volt 1/8 800 cycle supply.

Since ISS power was off, power from the OSS 800 cycle supply was being delivered to the ISS 800 cycle load and also to the output of the ISS 800 cycle amplifier. Part of this energy was converted to a DC voltage and applied to the +28 volt ISS 738 bus via the output transformer and rectifying action of the output transistors. The circuit is as shown in Figure 1.

In failure isolation tests GAN 214 was actually operated for two conditions for several minutes each where OSS was "ON" and ISS "OFF" and with OSS "OFF" and ISS "ON". Total power dissipation would be approximately the same in each case. The circuit of Figure 3 would however have the largest short circuit current flow.

Simulated failure tests were made using a breadboard amplifier of the 800 cycle 1% supply. These tests aided in substantiating the failure and in analyzing the short circuit effects on the "driven" 800 cycle 1% amplifier and also on the "driver" 800 cycle 1% amplifier.

It was determined that the output transistors in the driven amplifier were acting as Zener switches when the emitter-to-base voltage exceeded the breakdown level of approximately 16 volts. With 14 volts RMS across each half of the primary, each transistor was "ON" (conducting) about 20% of each cycle. Figure 2 shows the equivalent circuit.
This "On" time can be calculated as follows:

\[
\text{Peak voltage} = 2 \times (14) = 20 \text{ volts}
\]
\[
20 \cos \theta = 15 \quad \cos \theta = 16/20 = 0.8
\]
\[
\theta = 37^\circ \quad 2 \theta = 74^\circ
\]
\[
74/360 = 20.5^\circ \text{ "On" time}
\]

Since each transistor is "On" for 20% of each cycle the total "On" time for both transistors is 40%. Peaked current waveform observed through an induced short circuit test on G&N 207 are shown in Figure 3a. Voltage waveforms tend to be flattened slightly at their peaks because of the additional loading effects during this period.

Figure 5 shows the power dissipation levels that occur under the shorted condition. The values shown were obtained from empirical and analytical sources and should closely represent the actual case.

Power dissipation will be most severe in the driving 800 cycle power amplifier since it must supply the two parallel loads plus that required to drive the output of the driven 800 cycle amplifier as detailed in Figure 3. Total load power under the conditions shown is approximately 24 watts. Power input to this amplifier is approximately 50 watts resulting in 26 watts of internal amplifier dissipation. Of this, 2 watts is dissipated in the output transformer and 12 watts in each output transistor Q4 and Q5.

The transformer has a secondary resistance of 0.8 ohms and 0.5 ohms in each hall of the primary. Secondary and primary currents were measured at 0.86 amperes and 1.7 amperes respectively. Therefore \( P_{SEC} = I^2R = (0.86)^2 (0.8) = 0.6 \) watts \( P_{PK} = (1.7)^2 (0.5) = 1.4 \) watts or 2 watts total. Because of the size and construction of this transformer, no appreciable temperature rise and consequently no overstress occurred.

Power dissipated by the output transistors is as follows:

\[
P = IE \times \text{50% duty cycle}
\]
\[
= (1.7 \text{ amp}) (14 \text{ volts}) \times 0.5 = 11.9 \text{ watts}
\]

These levels of current and power are considerably less than their rated capabilities. A potential overstress analysis was made by Dept. 32-37. (Ref. DSE-Apollo(P)-78) on these transistors at power level dissipations of 20 watt each which allows a 60% margin.

The results of their analysis indicate no overstress occurred and that device submitted to these conditions are flightworthy.

\[\text{Approved by: R. Kramar}\]

G. Kramar
Figure 1

800Hz 1% Amplifier Output Stage

Figure 2

800Hz 1% Amplifier Equivalent Effect of Output Stage
Figure 3a. Power Distribution During Shorted Condition of I33 Supplying the OSS 300kHz Amplifier

\[ P = 35V \times 0.53\text{ Amp} \times 40\% \text{ On} \]
\[ = 7.5 \text{ Watts} \]

Figure 3b. Voltage and Current at Input to OSS 300kHz Output