GUIDANCE SYSTEM OPERATIONS PLAN
FOR MANNED LM EARTH ORBITAL MISSIONS
USING PROGRAM SUNDA 306, AND
PROGRAM LUMINARY 069

SECTION 1 PRELAUNCH
(Rev. 1)

DECEMBER 1968

MIT INSTRUMENTATION LABORATORY
CAMBRIDGE 39, MASSACHUSETTS
ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-23870, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065 with the Instrumentation Laboratory, Massachusetts Institute of Technology, Cambridge, Mass.
GUIDANCE SYSTEM OPERATIONS PLAN
FOR MANNED LM EARTH ORBITAL MISSIONS
USING
PROGRAM SUNDANCE
SECTION 1 PRELAUNCH

Signatures appearing on this page designate approval of this document by NASA/MSC.

Approved: Thomas F. Gibson
Date: 8/12/68
Asst. Chief, Flight Software Branch
Manned Spacecraft Center, NASA

Approved: James C. Stokes, Jr.
Date: 3/6/68
Chief, Flight Software Branch
Manned Spacecraft Center, NASA

Approved: Lynwood C. Dunseith
Date: 3/12/68
Chief, Flight Support Division
Manned Spacecraft Center, NASA
<table>
<thead>
<tr>
<th>GSOP #R-557</th>
<th>Title: For Manned LM Earth Orbital Missions Using Programs SUNDANCE (Rev 306), and LUMINARY (Rev 069)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section #4</td>
<td>Title: Pre-launch (Rev. 1) December 1968</td>
</tr>
<tr>
<td>December</td>
<td>Date Rev.</td>
</tr>
<tr>
<td>December 1968</td>
<td>1</td>
</tr>
</tbody>
</table>

Revision 1 incorporates the following NASA/MSC approved change and is published as a complete new document.

PCR 262 Section 1 Update
Rev. 1 of Section 1 of R-557 "Guidance System Operations Plan for Manned LM Earth Orbital Missions Using Program SUNDANCE (Revision 306) "Pre-launch" includes all of the material required to make the document completely applicable to those missions using Program LUMINARY (R-567). For this reason, no separate Section 1 for the LUMINARY GSOP will be published, and the SUNDANCE volume will be used in its place. If pre-launch test operations for LUMINARY (Rev 069) deviate from one-to-one correlation with those for SUNDANCE in the future, a LUMINARY Section 1 will be issued.
1.1 Introduction

1.2 LGC Self Test

1.3 Performance Test Computations
 1.3.1 Gyro Drift Measurement
 1.3.2 Accelerometer Error Measurement
 1.3.3 Gyro Torquing Scale Factor Error Measurement
 1.3.4 AGS - IMU Alignment Check

1.4 Functional Description of System Performance Tests
 1.4.1 Gyro Drift and Accelerometer Error Test Description
 1.4.2 IRIG Scale Factor Test Description
 1.4.3 AGS - IMU Alignment Check Description

1.5 Performance Test Data Analysis
 1.5.1 IRIG Scale Factor Data
 1.5.2 Gyro Drift Data
 1.5.3 Accelerometer Scale Factor Error and Bias Error Data
 1.5.4 AGS Alignment
1.0 PRELAUNCH TEST PROGRAMS

1.1 The Guidance System Operations Plan is published as six separate volumes (sections) as listed below:

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>Pre-Launch Test Programs</td>
</tr>
<tr>
<td>Section 2</td>
<td>Data Links</td>
</tr>
<tr>
<td>Section 3</td>
<td>Digital Auto-Pilots</td>
</tr>
<tr>
<td>Section 4</td>
<td>Operational Modes</td>
</tr>
<tr>
<td>Section 5</td>
<td>Guidance Equations</td>
</tr>
<tr>
<td>Section 6</td>
<td>Control Data</td>
</tr>
</tbody>
</table>

The purpose of this section is to present the program requirements and descriptions for the prelaunch calibration and test operations for a manned LM Apollo Earth Orbital or Lunar Missions.

These routines utilize the uplink capability (described in Section 2) of the LGC to load either variables or instructions for utilization or execution during the running of the tests.

The results of the gyro drift and accelerometer parameter tests are used to determine or confirm the IMU compensation parameters used for the mission. The compensation parameters will be loaded prior to launch and used during the mission to reduce the IMU alignment and specific force measurement errors.

This volume constitutes a control document to govern the test methods and data analysis equations to be used for prelaunch calibration and test.

Revisions to this plan which reflect changes in the above control items require NASA approval.
1.2 LGC SELF-CHECK and SHOW-BANKSUM

The version of AGC Block II SELF-CHECK found in the program SUNDANCE has been reduced to include only the erasable memory check, the fixed memory check and the SHOW-BANKSUM job.

1.2.1 Options Available in SELF-CHECK

The different options of SELF-CHECK are controlled by loading the appropriate numbers into the SMODE register. Placing a +0 into the SMODE register forces the computer to go into the backup idle loop where it continuously looks for a new job. Loading SMODE with ±11 octal or greater causes SMODE to be changed to +0 and puts the computer into the backup idle loop. Loading SMODE with any other number less than ±11 octal starts up one of the active SELF-CHECK options. These option numbers are as follows:

+4 octal checks erasable memory
+5 octal checks fixed memory
±10 octal performs both previous options
±1, ±2, ±3, ±6, ±7 same as ±10 option
-0 same as ±10 until an error is detected.

The SMODE register is set to +0 by any FRESH START.

1.2.2 Procedure to Start SELF-CHECK

Noun 27 is assigned to the SMODE register, so to activate SELF-CHECK use the DSKY as follows:

V21N27E (option number) E

This loads the desired option number into SMODE, and starts that option.

1.2.3 SHOW-BANKSUM Operating Procedures

The SHOW-BANKSUM routine shows the sum of the bank in R1 of the DSKY (equal to plus or minus the bank number), the bank number in R2 of the DSKY, and the "bugger" word in R3 of the DSKY. The operating procedure consists of three steps: it is important to perform the last step to end this particular job.

Procedure to START SHOW-BANKSUM

This routine has its own Verb (91) so it is very easy to start. The
information for bank 00 appears in R1, R2, R3 of the DSKY immediately after starting SHOW-BANKSUM. Verb 05 Noun 01 is used to display this information. Starting SHOW-BANKSUM puts +0 in the SMODE register. This forces SELF-CHECK to go into the backup idle loop.

STARTING PROCEDURE V91E
(The computer must be in Programs 00, or a V36E should precede V91E.)

Procedure to Display Next Bank

The "proceed" verb is utilized to display the sum of the rest of the banks. Each time the proceed verb is entered from the DSKY, the information for the next higher bank appears in R1, R2, and R3 of the DSKY. If another "proceed verb enter" is performed after the last bank in a particular rope has been observed, the information for bank 00 will be displayed again. Continued proceed verb entries will allow you to observe all the banks a second time.

CONTINUE PROCEDURE V33E or PRO

Procedure to Stop BANK-SHOWSUM

The operator must punch in the "terminate" verb when he is through with SHOW-BANKSUM. This terminates the SHOW-BANKSUM routine in the EXECUTIVE.

TERMINATE PROCEDURE V34E

1.2.4 Control of SELF-CHECK options (Figure 1.2.4-1)

The program starts at the entry point SELFCHK after which it stores the address of the ERASCHK routine in register SKEEP1. A check for a new job is made and if no job is waiting, proceed to test register SMOD. If the contents of SMODE is +0, idle by looping through the check for a new job or, if greater than ±10 octal, change SMODE to +0 and idle. For any other contents of SMODE increment the SCOUNT register and test SMODE again, following with either A, B, or C below.

A. If the contents of SMODE is ±4 perform ERASCHK, the check of erasable memory diagramed in Figure 1.2.6-1, CNTRCHK, the check of all counters and other special erasable registers (Figure 1.2.6-2), and CYCLSHT, the check of the cycle and shift registers in Figure 1.2.6-3. Then increment SCOUNT+1 register, store the address of the ROPECHK routine in register SKEEP1 and check for a new job starting the erasable memory test option again. Normally the program continues to cycle as above until the content of SMODE is changed by DSKY or until an error is detected.

1-3
Fig. 1.2.4-1 Control of SELF-CHECK Options
B. If the contents of SMODE is \(\pm 5 \) perform ROPECHK, the check of fixed memory in Figure 1.2.7-1. The program then cycles back through the starting point SELFCHK and continues to cycle in a manner similar to that of option \(\pm 4 \), as described in the preceding paragraph.

C. If the contents of SMODE is \(-0, \pm 10\) octal, \(\pm 1, \pm 2, \pm 3, \pm 6, \) or \(\pm 7 \) branch to the routine indicated by the address in register SKEEP1. For the first pass this would be the address of ERASCHK. Complete the ERASCHK, CNTRCHK, CYCLSHFT loop. At the start of the second pass, the content of SKEEP1 has been changed to the address of ROPECHK. Therefore, after the second test in the loop of SMODE, the branch (TC SKEEP1) is to ROPECHK. At the end of ROPECHK the program loops through SELFCHK changing SKEEP1 to the address of ERASCHK for the third pass. This alternate cycling of ERASCHK and ROPECHK continues indefinitely until the content of SMODE is changed by DSKY or an error is detected. In the event that an error is detected, the program stores in register SFAIL the address of the location following the location in SELF-CHECK that detected the error. This address is also stored in the register ALMCADR for the ALARM routine. If ERASCHK is running, the program will also restore the contents of the erasable registers under test. The register ERCOUNT (set to +0 by DSKY FRESH START) is incremented and the ALARM routine is called. The ALARM routine turns on the program alarm light and loads into register FAILREG the alarm code for SELF-CHECK (octal 01102). The BBCON of SELF-CHECK is loaded into register ALMCADR +1 and returns control to the SELF-CHECK program. The contents of SMODE is then tested, followed by D, E or F.

D. If SMODE is + Non-Zero, change the contents to +0 which puts the computer into the backup idle loop.

E. If SMODE is - Non-Zero, start the option again from the beginning (at entry point SELFCHK).

F. If SMODE is -0, branch on the contents of SFAIL to the location in SELF-CHECK immediately following the location where the error was detected and proceed with the option from that point.

G. Alarm Display: A SELF-CHECK error initiates program alarm by calling subroutine ALARM2 with \(C(A) = C(Q) = C(ALMCADR) = (SFAIL) \) and ERCOUNT incremented by one. The alarm code for self check error is 01102₈.
H. In the event that the check for a new job finds one waiting, the job will be executed and at the conclusion will return control to SELF-CHECK. Since SELF-CHECK is run as part of the backup idle loop it cannot run as long as there are any active jobs.

1.2.5 Explanation of SHOW-BANKSUM (Figure 1.2.5-1)

SHOW-BANKSUM consists of a routine called SHOWSUM. This routine essentially does the same thing that the routine ROPECHK does; that is, add up the sum of separate banks in the rope. After this the similarity ends. ROPECHK makes sure the sum of the bank is plus or minus its own bank number while SHOWSUM displays the sum of the bank in R1 of the DSKY irrespective of what the sum may be. SHOWSUM also displays the bank number and the bugger word in R2 and R3 of the DSKY at the same time. The sum of the bank and bank number in R1 and R2 are shown as the least significant bit instead of bits 11-15 (the actual bank bits in the computer).

Undoubtedly the greatest use of this routine will be in restoring the confidence of personnel in the computer and in verifying that the correct rope modules for a particular mission are actually the ones in the computer package. Following is a short description of the SHOWSUM subroutine.

Each bank in the rope is summed separately; from the lowest address to the highest address used in that bank. The contents of a higher address are added to the sum of the previous addresses. If this creates an overflow condition, a +1 is added to the new sum; a −1 is added to the new sum if an underflow condition is created. The sum of each bank should be plus or minus its own bank number. The sum of the bank is displayed in R1 of the DSKY. The bank number (actual bank number used to sum the bank cycled 5 places left) is displayed in R2 and the bugger word is displayed in R3. Entering a proceed verb (33) from the DSKY will display the same information for the next higher bank. Entering a terminate verb (34) from the DSKY will end the SHOWSUM routine.

1.2.6 ERASCHK (Figure 1.2.6-1)

This part of SELF-CHECK makes sure that it is possible to read a "1" and a "0" into and out of each bit position of erasable memory.

The RESTART program tests the contents of ERESTORE (the ERASCHK activity indicator) before proceeding with RESTART. The contents of ERESTORE (set to +0 any FRESH START) should be equal to the contents of SKEEP7 (address of the first of the pair of registers under check by ERASCHK)
Start SHOWSUM again

Load by DSKY V91E

SHOWSUM
Turn off SELF-CHECK

STSHOSUM
(=ROPECHK + 2)
initialize for first bank

Sum one bank

Display by DSKY
R1 = sum of bank
R2 = actual bank number
R3 = "bugger" word

Operator DSKY Action

Terminate Job

V34E

V33E Proceed

Start SHOWSUM again

Go to next bank

Fig. 1.2.5-1 Control of SHOW- BANKSUM
or equal to positive zero if no pair of registers are being checked. If the test determines that the contents of ERESTORE is not "a positive number less than 2000 octal and equal to the contents of SKEEP?", the program switches to DOFSTART (programmed FRESH START). The reason for the DOFSTART is that the improper contents of register ERESTORE causes one to doubt the contents of erasable memory. (The exception occurs when ERESTORE itself is being tested.)

If the contents of ERESTORE are positive zero, do not restore erasable, proceed with RESTART. If the contents of ERESTORE are positive, less than 2000 octal, and equal to the contents of SKEEP, then the original contents of the pair of registers under check are restored to those registers. ERESTORE is set to positive zero and the program proceeds with the RESTART.

The non-special erasable registers are checked for correct addressing and content by placing their own address in two successive registers and making sure there is a difference of -1 when the contents of the lower address register is added to the complement of the higher address register; if it is not, this subroutine branches to the PRERRORS subroutine.

The previous contents of the erasable registers had been preserved and are restored to the two registers by PRERRORS which then performs a TC to the ERRORS subroutine.

If the difference is -1, the contents of the two registers are complemented and the complement of the lower register added to the contents of the higher register; the result is checked for -1. If the result is not -1, TC to PRERRORS as noted above. If the result is -1, restore the previous contents to the two registers, and proceed to the next iteration. The higher address register of the past iteration becomes the lower address register of the next iteration. The erasable memory banks are checked from zero through seven with common erasable (60-1373) being checked after each erasable bank.

CNTRCHK (Figure 1.2.6-2)

The CS instruction is performed on all erasable registers from octal 60 through octal 10. These include all counters and other special erasable registers. It is not feasible to put their own address in these registers and check their contents because of their special use.

CYCLSHFT (Figure 1.2.6-3)

The octal number 25252 is placed in the two cycle registers, the shift right register, and the EDOP register. The contents of these registers are then twice checked for correct contents.
CNTRCHK

put 00050 in SKEEP2 and A register

Decrement SKEEP2

add 00010 to c(A)

CS erasable addresses 60 through 10 octal

+ NON-ZERO

CCS SKEEP2

+0

go to CYCLSHFT

Fig. 1.2.6-2 CNTRCHK
CYCLSHFT

1. Put 25252 in CYR, CYL, SR, EDOP registers.
2. Add c(CYR), c(CYL), c(SR), c(EDOP), and a constant and check that result is -1.
3. Add c(CYR), c(CYL), c(SR), c(EDOP), and +1 and check that result is -1.
4. Increment SCOUNT +1.
5. Go to SMODECHK.
 (Put address of ROPECHK in register SKEEP1, check for new job and check register SMODE for SELF-CHECK option.)
1.2.7 Check of Rope Memory (Figure 1.2.7-1)

The routine for checking the correct contents of a rope is called ROPECHK. Its purpose is twofold. First, it is a check on the computer. It makes sure all current drivers, sense amplifiers, and associated circuitry used in connection with the fixed memory are operating properly. Secondly, it is a check on the rope itself. It makes sure none of the sense or inhibit lines have become shorted or opened (essentially guarantees content of rope is correct and can be read correctly by the computer).

The sum of each bank should be the same as its bank number in the low order bits of the computer. A special word, which is called a "bugger" word, is added to the normal sum of the bank as the last word to be added. This "bugger" word forces the sum of the bank to be plus or minus the Bank Number. As an example, the sum of bank 33 octal may be 00033 or 77744. Two TC SELF words indicate the end of the summing process for each bank unless the bank is full. The "bugger" word immediately follows the second TC SELF word. If the bank is full, the "bugger" word is in the last address, and the two TC SELF words are not necessary to indicate the end of the summing process for that bank. Of course, all addresses in a bank up to and including the "bugger" word have to contain words of good parity. Following is a short description of the ROPECHK routine.

Each bank in the rope is summed separately; from the lowest address to the highest address used in that bank. The content of a higher address is added to the sum of the previous addresses. If this creates an overflow condition, a +1 is added to the new sum; a -1 is added to the new sum if an underflow condition is created. The sum of each bank should be plus or minus its own bank number. If the sum of the bank is its bank number, the subroutine proceeds on to checking the next bank. If the sum of the bank is not its bank number, SELF-CHECK goes to the error routine. The banks are checked in ascending order.
+I in
put +0 in SMODE.
initialize SELFRET to address
of SELFCHK

-0 CCS SKEEP +1

set flag to check common fixed
banks 00 and 01

initialize required to check
a common fixed bank

add SUM of bank (check for new
job between additions)

is sum of bank the same
as bank number

NO
ERRORS

YES
ALARM

put +0 in SMODE
and flag

display (1) SUM of bank, (2) actual bank
number and (3) bugger word in R2, R2,
and R3 of the DSKY

wait for PRO

go to start of SELFCHK

has last bank been checked

NO

what kind of bank is to be
checked next?

common fixed
fixed
fixed

is bank 02 next banks
to be checked

YES

set flag to check fixed
fixed banks 02 and 03

initialization required
to check banks 02

-0 CCS SKEEP +1

go to start
of SELFCHK

start SHOWSUM again

Fig. 1.2.7-1
1.3 Performance Test Computations

1.3.1 Gyro Drift Computation

The physical basis for gyro drift measurement during prelaunch operations is the detection of the vector rotation of the gravity reaction acceleration. The IMU accelerometers provide the necessary data. The data is corrupted by accelerations due to launch vehicle swaying motion and by quantization in the Pulsed Integrating Pendulous Accelerometer.

The effect of gyro drift on the vector rotation of gravity is small, therefore an optimum data processing method is required.

The data is processed by a simplified optimum filter which includes in its state vector estimates of the launch vehicle disturbances. The 13-dimensional state vector is described in Table I.

The simplified filter design recognizes that the gains for the optimum filter may be precomputed, since the measurement times will be the same for all trials and the a priori assumptions for the statistics of the initial state vector will not change.

The filter gains are precomputed by operating on a digital simulation of the system with a complete linear optimum filter. The gain functions are reconstructed piecewise in the LGC during the operation of the filter process using data loaded into the LGC erasable memory. The operation of the simplified optimum filter is depicted in Figure 1.3.1-1.

Figure 1.3.1.1 is a block diagram representing the following computations:

A. Measurement

The accelerometers are sampled every second. The sampled accelerometer outputs are transformed to the vertical, north and east reference coordinate system.

\[
\begin{bmatrix}
\Delta V_x \\
\Delta V_y \\
\Delta V_z
\end{bmatrix}
= \begin{bmatrix}
\Delta V_v \\
\Delta V_s \\
\Delta V_e
\end{bmatrix}
\]

Where \[XSM\] is the transformation matrix from vertical, south, east earth reference to stable member coordinates.

The sign of the \[\Delta V_s\] is changed by \[\Delta V_s = -\Delta V_s\].

The measurements are used to update estimates of south and east velocity. It is corrected for the effects of wind disturbance.
\[\begin{align*}
\Delta M_1 &= 4(C_2 v_s) - \dot{p}_s, \\
\Delta M_2 &= 4(C_2 v_e) - \dot{p}_e
\end{align*}\]

B. Filter gains

The filter gains are pre-determined in the design process of the simplified filter. The gains are updated every second. The following gains are used.

1. \(K_1\) multiplies the total pulse counts from the accelerometers (\(p_0\)).
2. \(K_2\) multiplies the estimated east axis leveling angle (\(\gamma\)).
3. \(K_3\) multiplies the estimated azimuth axis angle (\(\alpha\)).
4. \(K_4\) multiplies the estimated vertical gyro drift (\(dx\)).
5. \(K_5\) multiplies the estimated north-south gyro drift (\(dy\)).
6. \(K_6\) Zero.
7. \(K_7\) wind induced sway velocity gain.
8. \(K_8\) wind induced sway accelerometer gain.

For the first 30 seconds \(K_1\) and \(K_2\) have the form \(Ae^{-t/\gamma}\) (see figure 1,3,1-2 and 1,3,1-3).

\[K_1 = 0.935e^{-0.0912t}\]
\[K_2 = 0.262e^{-0.208t}\]

The gains are modified at each sample as follows:

\[K_1 a_1 = K_1 \quad [K_1(0) = .93505870]\]
\[K_2 a_2 = K_2 \quad [K_2(0) = .26266423]\]

\(K_3, K_4, K_5, K_6\) are zero initially, then modified as follows:

\[K_3 + a_3 = K_3\]
\[K_4 + a_4 = K_4\]
\[K_5 + a_5 = K_5\]
\[K_6 + a_6 = K_6\]

The values of \(a_1 - a_5\) are applicable over specified intervals. The values of \(a_1 - a_5\) and their applicable intervals are tabulated in Table 2. \(a_6\) is zero.

\[K_7 = 0.17329931\]
\[K_8 = -0.00835370\]
C. State vector update

The state vector variables are updated as follows:

\[\alpha + \Delta M_1 (K_3) = \alpha \]
\[\beta + \Delta M_1 (K_2) = \beta \]
\[\gamma + \Delta M_2 (K_2) = \gamma \]
\[p_0_s + \Delta M_1 (K_1) = p_{0_s} \]
\[p_{0_e} + \Delta M_2 (K_1) = p_{0_e} \]
\[v_s + \Delta M_1 (2K_7) = v_s \]
\[v_e + \Delta M_2 (2K_7) = v_e \]
\[p_{s'} \quad \text{These parameters are updated during} \]
\[p_{e'} \quad \text{launch vehicle parameter extrapolation} \]
\[a_s + \Delta M_1 (2K_8) = a_s \]
\[a_e + \Delta M_2 (2K_8) = a_e \]
\[d_y + \Delta M_2 (K_4) = d_y \]
\[d_x + \Delta M_1 (K_4) = d_x \]

D. Extrapolation of launch vehicle parameters.

The launch vehicle parameters are extrapolated for the next measurement using the following equations:

\[p(t_{n+1}) = [C_1 p(t_n) + C_2 v(t_n) + C_3 a(t_n)]^2 \]
\[v(t_{n+1}) = [C_4 p(t_n) + C_5 v(t_n) + C_6 a(t_n)]^2 \]
\[a(t_{n+1}) = [C_7 p(t_n) + C_8 v(t_n) + C_9 a(t_n)]^2 \]

Where the coefficients C of the transition matrix are:

\[C_1 = 0.47408845 \]
\[C_2 = 0.23125894 \]
\[C_3 = 0.14561689 \]
\[C_4 = -0.06360691 \]
\[C_5 = -0.16805746 \]
\[C_6 = 0.15852339 \]
\[C_7 = -0.06806784 \]
\[C_8 = -0.75078984 \]
\[C_9 = -0.24878704 \]
E. Calculation of the sines and cosines of alignment angles for extrapolation of platform variables.

This simply involves computation of the sine and cosine of the various angles using the interpretive trigonometric routines in the CMC program.

The following functions are evaluated:

\[
\begin{align*}
\sin \alpha, & \quad \cos \alpha \\
\sin \beta, & \quad \cos \beta \\
\sin \gamma, & \quad \cos \gamma
\end{align*}
\]

F. Extrapolation of stable member variables.

The Euler angles for aligning the stable member to the reference coordinates are computed as follows:

\[
W_{\text{sm}} = \begin{vmatrix}
 \text{dx} \\
 \text{dy} \\
 \text{dz}
\end{vmatrix} + \begin{vmatrix}
 Y_{\text{sm}} \\
 W_e
\end{vmatrix}
\]

Where

\[
Y_{\text{SM}} = \begin{vmatrix}
 \cos \beta & 0 & -\sin \beta \\
 0 & 1 & 0 \\
 \sin \beta & 0 & \cos \beta
\end{vmatrix}
\]

for vertical drift measurement

\[
W_{\text{SM}} = W_{\text{SM}} + W_e
\]

G. Computation of estimates of velocity to be measured.

This computation adds to the previous value of south and east velocity the component of velocity expected due to the rotation with respect to gravity.

\[
\begin{align*}
\alpha & = \alpha + \left(\begin{vmatrix}
\dot{\alpha} \\
\dot{\beta} \\
\dot{\gamma}
\end{vmatrix} \Delta T \right) \cdot 39737013/4096 \quad \text{(radians)}
\end{align*}
\]
\hat{p_o}_s = \hat{p_o}_s + \sin \gamma g
\hat{p_o}_e = \hat{p_o}_e + \sin \beta \cos \gamma g
Measurement
Sampled velocity increments from PIPAs transferred into vertical, south and east reference coordinate system.

Extrapolate stable member variables according to platform dynamics for next measurement.

Extrapolate launch vehicle parameters for next measurement.

Subtract extrapolated launch vehicle parameters.

Calculate sines and cosines of alignment angles for extrapolation of platform variables.

Incorporate current PIPA measurements in state vector.

Pre-load all filter gain calculation data.

Reconstruct gains for current measurement time.

Fig. 1.3.1-1 Operation of the Simplified Optimum Filter
<table>
<thead>
<tr>
<th></th>
<th>Prelaunch Calibration State Vector Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Azimuth Alignment Angle ((\alpha))</td>
</tr>
<tr>
<td>2.</td>
<td>South Axis Leveling Angle ((\beta))</td>
</tr>
<tr>
<td>3.</td>
<td>East Axis Leveling Angle ((\gamma))</td>
</tr>
<tr>
<td>4.</td>
<td>South PIPA Velocity Increment ((p_{0s}))</td>
</tr>
<tr>
<td>5.</td>
<td>East PIPA Velocity Increment ((p_{0e}))</td>
</tr>
<tr>
<td>6.</td>
<td>Launch Vehicle Velocity; North-South ((v_s))</td>
</tr>
<tr>
<td>7.</td>
<td>Launch Vehicle Velocity; East-West ((v_e))</td>
</tr>
<tr>
<td>8.</td>
<td>Launch Vehicle Displacement; North-South ((p_s))</td>
</tr>
<tr>
<td>9.</td>
<td>Launch Vehicle Displacement; East-West ((p_e))</td>
</tr>
<tr>
<td>10.</td>
<td>Launch Vehicle Acceleration; North-South ((a_s))</td>
</tr>
<tr>
<td>11.</td>
<td>Launch Vehicle Acceleration; East-West ((a_e))</td>
</tr>
<tr>
<td>12.</td>
<td>South Gyro Drift ((d_Y))</td>
</tr>
<tr>
<td>13.</td>
<td>Vertical Gyro Drift ((d_X))</td>
</tr>
<tr>
<td>TIME (seconds)</td>
<td>a_1 (Time Constant PIPA Counts)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>0-30</td>
<td>0.91230833</td>
</tr>
<tr>
<td>31-90</td>
<td>0.99122133</td>
</tr>
<tr>
<td>91-100</td>
<td>0.99971021</td>
</tr>
<tr>
<td>101-200</td>
<td>0.00550063</td>
</tr>
<tr>
<td>201-450</td>
<td>0.99673264</td>
</tr>
<tr>
<td>451-790</td>
<td>0.99924362</td>
</tr>
<tr>
<td>791-1200</td>
<td>0.99963845</td>
</tr>
<tr>
<td>1201-1700</td>
<td>0.99934865</td>
</tr>
<tr>
<td>1701-2100</td>
<td>0.99947099</td>
</tr>
<tr>
<td>2101-2700</td>
<td>0.99957801</td>
</tr>
<tr>
<td>2701-3400</td>
<td>0.99966814</td>
</tr>
<tr>
<td>3401-4000</td>
<td>0.99972716</td>
</tr>
</tbody>
</table>

Table 2 Time Constants and Slopes
Figure 1.3.1-2 Gain Variation with Time.
Figure 1.3.1-3 Gain Versus Time
1.3.2 Accelerometer Scale Factor Computation

The accelerometer scale factor and bias errors are determined by comparing measured output with local gravity reaction acceleration. The accelerometer is aligned with gravity at the start of the measurement using the estimates of leveling error angles generated by the simplified optimum filter (1.3.1). Pulse rate from the vertical accelerometer is measured. (Figure 1.3.2-1). The pulse rate is converted to cm/sec2 and displayed.

1.3.3 Gyro Scale Factor Error Computation

The computation of the gyro scale factor is performed by comparing the number of gyro pulses required to drive a CDU through 22.5° to the number for the ideal scale factor. The result is then scaled for display in units of parts/million (ppm). The effect of CDU quantization (40 arc sec) is eliminated by starting the gyro pulse count at the receipt of a CDU bit and stopping at the receipt of the last bit. A gyro pulse corresponds to only approximately 0.62 arc sec so this quantization is not important. Figure 1.3.3-1 shows the flow of these computations.

A major potential error source is uncertainty in the Navigation Base azimuth arising from uncertainty in the spacecraft placing and in spacecraft tolerance buildup. The uncertainty in scale factor error is about 136 ppm per degree of Navigation Base azimuth error. Measurement of Navigation Base alignment may be required to reduce this error. To smooth uncertainties due to the CDU pulse rate characteristics, the test should be repeated three times for each gyro in each direction and the results averaged.

1.3.4 AGS Alignment Test Computation

A check of the mechanical alignment between the IMU stable member and the ASA is to be made. The check is to be accomplished by a comparison of the IMU CDU angles with angles computed by the AGS from the ASA accelerometer outputs. The IMU platform is to be leveled and the gimbal angles for a level platform transmitted to the AGS. The computations required for leveling the platform and holding an azimuth are depicted in Figures 1.3.4-1 and 1.3.4-2. The majority of the program to accomplish this computation is to be executed by instructions loaded into the LGC erasable memory.
Store the contents of the Scalar at time of occurrence of a ΔV from selected PIPA as T₁. Store PIPA counter contents as P₁.

Compute Earth Rate correction for elapsed time and correct platform alignment:

\[2^9 (ΔT) |E_{rv}| [X_{sm}]^{T} + |E_{rc}| \rightarrow |E_{rc}|^{*} \]

Store the contents of Scalar at time of occurrence of a ΔV from selected PIPA as T₂, store PIPA counter as P₂.

Compute Δₚ and Δₜ:

\[P₂ - P₁ = Δₚ \]
\[T₂ - T₁ = Δₜ \]

Compute \(\frac{Δₚ}{Δₜ} \) as measured:

\[*K = \frac{Δₚ}{Δₜ} = \frac{g_m}{3200} \]

\(*K \) = Ideal Scale Factor \(\times 3200 \) (Scaling Constant)

\(*m = 0.24330048 \) gyro pulses/10ms

\(|E_{rc}| \) = gyro torquing error vector

\(|X_{sm}| \) = coordinate transformation matrix

DISPLAY
Initialize LGC

giving gyro to be
tested, direction,
N. B. orientation
and other data
(See sec. 1.4.2)

Coarse align drive
360° about OA, then
Fine align GM as
test gyro to be
EAST (West)

Calculate gyro
torquing required
to compensate
earth rate,

\[
\sin \text{lat} \quad \cos \text{lat} \quad m^* = E_{rc}^T
\]

Zero CDU counter corresponding
to gyro under test,

Alarm if CDU count
during RELINT
Alarm code 1660

Start
Gyro Torquing

Load 22.5° into
CDU counter

Monitor for
2048 pulses
22.5° in CDU
counter

Read gyro pulse
counter

Stop Test
Alarm
Alarm Code 1670

Compute SF
Error (PPM) *
(Ideal no. of pulses)
- (no. actually used)) \times K

K = \frac{22.5 \times 3600 \text{ sec/deg} \times 10^{-6}}{517 \text{ sec/pulse}}

Unreasonable result
SFE \geq 20 \times 10^3 \text{ ppm}

Compute result
in ppm

Repeat each
portion of the
test three times
and operator
average results

m^* = 0.24339048 \text{ gyro pulses/10 msec}
|X_{am}| = \text{coordinate transformation matrix}

\text{torque gyro
2.8°}

CDU moved 22.5°

even passes

odd passes

Display result
in ppm

|E_{rc}| = \text{gyro torquing error vector}

Repeat each
portion of the
test three times
and operator
average results

Torque gyro

3rd odd pass

Gyro Torquing

Fig. 1.3.3-1
Fig. 1.3.4-1 Azimuth Alignment Loop for AGS Alignment Test Program
Fig. 1.3.4-2 Vertical Erection Loop for AGS Alignment Test Program
1.4 Functional descriptions of system performance tests

1.4.1 Gyro and accelerometer calibration program

The gyro and accelerometer calibration program requires initialization of 166 erasable memory addresses prior to starting the test. The complete determination of the performance parameters requires repeat of the test 13 times. Each repeat test will reorient the platform with respect to the following reference coordinate system:

X axis - in the direction of local gravity reaction acceleration
Y axis - south
Z axis - east

The initialization data include constants for determination of filter gains (1.3.1), desired stable member orientation, and spacecraft latitude and azimuth.

The initialization data must be pre-loaded for each of the 13 repeat tests. Each test is terminated with a FRESH START (V36) and assumes a FRESH START has been executed prior to its initialization.

The following flow diagram provides a detailed description of the operation. (Fig. 1.4.1-1)
LGC OPERATIONS OPERATOR OPERATION COMMENTS

Initialize program. Set mode 07. Display latitude and azimuth. VERB 06 N 41
Azimuth ± XXX, XX DEG
Latitude ± XX, XXX DEG

Is Azimuth and Latitude correct?

NO YES

VERB 33 ENTER

Load correct azimuth and latitude
VERB 24 NOUN 41 ENTER
Azimuth ± XXX, XX ENTER
Latitude ± XX, XXX ENTER

Calculate coarse align angles to position stable member to preloaded orientation

Fig. 1.4.1-1 Gyro and Accelerometer Calibration Program

(continued on next page)
LGC Operations

Operator Operation

Comments

Coarse align gimbals

Observe NOATT light on DSKY

Presence of IMU or CDU fail signal at this time will result in alarm code 01601 displayed. Operator must terminate test with VERB 36 ENTER.

Do calculated gimbal angles result in gimbal lock?

NO

Observe alarm

Potential causes of overflow are large initial alignment errors, (>3°) errors in initialization load or degraded accelerometers

YES

Sample IMU accelerometers every 1 second and estimate southerly gyro drift

Check for computation overflow

Has 600 seconds elapsed?

No

Overflow Occurred

Turn on alarm 01600

Observe alarm
determine cause for system failure
Terminate test with VERB 36 ENTER.

YEs

Overflow

Fig. 1.4.1-1 (Cont'd)
LGC Operations

Operator Operation

Comments

Display south gyro drift

VERB 06 NOUN 98
R1: XXXXX
R2: XXXXX
R3: Position code

Do I wish to proceed to
accelerometer error measurement?

YES
PROCEED

NO
VERB 36
ENTER

Test terminated.

Align platform to local vertical using estimates of leveling errors computed by previous test section. Correct for earth rate errors.

The normal test flow will proceed if conducting test positions 1 - 4.

Alarm code 01601 will be displayed at this time if IMU or CDU fails are present at end of platform alignment.

The normal test sequence will proceed if conducting test positions 2 and 4.

Vertical drift measurement in positions 2 and 4 must be preceded by south gyro drift measurements in Positions 1 and 3.

Do I wish to proceed to vertical drift measurement?

YES
PROCEED

NO
VERB 36
ENTER

Test terminated.

Load estimates of previously measured east-west drift.

Display measured gravity

VERB 06 NOUN 98
R1: XXXXX \(\text{cm/sec}^2 \)
R2: XXXXX
R3: Position Code

Determine rate of vertical accelerometer pulses. Coarse align to 0°, 0°, 0° after rate determination.

Determine rate of vertical accelerometer pulses.

Fig. 1.4.1-1 (continued)
LGC Operations

Operator Operation

Comments

Torque platform to move Accelerometers out of deadzone region ($\approx 0.36^\circ$)

Sample IMU accelerometers every 1 second and estimate vertical gyro drift

Check for computation overflow

Overflow Occurred

Has 3990 seconds elapsed?

Correct earth rate caused misalignment in south axis only

Display VERB 06 NOUN 98

R1:±XXXXX } ERU
R2: XXXXX
R3: XXXXX SM POSITION CODE

Observe alarm
Determine cause for system failure. Terminate test with VERB 36 Enter.

TERMINATE TEST WITH VERB 36 ENTER

Fig. 1.4.1-1 (continued)
1.4.2 IRIG SF Functional Description

The stable member is positioned separately for each of six portions of the test. The LGC then positions the platform, torques the gyros, and computes the results without further operator action. The following flow diagram describes the LGC and ground/operator actions required. (Fig. 1.4.2-1)

1.4.3 AGS Alignment Test Functional Description

The AGS alignment test requires that the IMU stable member Y and Z axes be leveled and the Z axis held approximately in the direction of the navigation base Z axis.

The program for leveling the stable member will be loaded into erasable memory. Initialization of program variables will be done by loading the appropriate locations prior to start of the leveling program with a K-Start tape load. The IMU performance parameters must be determined prior to this check and loaded into the appropriate compensation registers.

The following flow diagram describes the details of the program operation. (Fig. 1.4.3-1)
Load KSTART Tape to initialize test.
The following data is loaded:
1. Set flag to provide branch for required delay after set gyro torque enable relay.
2. Set flag to provide small increment of torquing (640ms) before start test.
3. Set count of earth rate torque passes to zero.
4. Set index for CDU to be read.
5. Set flag to show direction to torque gyro.
6. Set indicator for gyro to be torqued.
7. Initialize register to show no CDU pulse yet.
8. Initialize so it will compensate for earth rate odd number times through.
9. Initialize a matrix which determines desired SM position.
10. Partially load the matrix for the Nav. Base position (remainder filled in by program based on N. B. azimuth and latitude.)
11. Partially initialize matrix used in calculation.
12. Constant for scale factor error calculation.

Enter V25N26E 04001E XXXXXE YYYYYE.
(Where XXXXX = Starting Address and YYYYY = Contents of B Bank)
Flash VO6 N41 with R1 = Azimuth
R2 = Latitude

Terminate Test

V34

V33E V21E V22E
Change azimuth
Change latitude

Calculate sin and cos az. Store in matrix giving N.B. position.

Calculate gimbal angles to align to desired position

Zero ICDU’s

Coarse align

Command 360° about OA of gyro under test

Fine align mode

(continued on next page)

Presence of IMU or CDU fail signal at this time will result in automatic test termination. Alarm Code 1650 will be displayed.

Observe No ATT light on DSKY

Fig. 1. 4. 2-1 (continued)
Fine align to desired angles

Calculate earth rate vector in sm coordinate.

Set gyro torque enable

Wait 20 ms

Start gyro torque with POSMAX in gyro torque counter

Wait 640 ms

Zero CDU Counter

(continued on next page)

Fig. 1.4.2-1 (continued)
Check for CDU pulse

1 pulse
 more than 1 pulse
 no pulse

Alarm Exit
Alarm Code 1660

160ms without interrupt

No

Yes

Check for higher priority job

Load 22.5° into CDU counter

Save contents of gyro torque counter

Torque gyro for 2.8° and monitor for CDU counter = 0

Even # exit CDU ≠ 0

CDU = 0

Odd # exit CDU ≠ 0

Compensate for earth rate

5th odd pass

EXIT Alarm
Alarm Code 1670

Monitor Alarm

Fig. 1.4.2-1 (continued)

(continued on next page)
Save final contents of gyro torque counter

Unreasonable number of pulses (Ref. Fig. 1.5.3.1)

Alarm Exit
Alarm Code 1670

Compute number of pulses corresponding to 22.5°

Compare to ideal number and compute scale factor error

Display V06N36
R1 = SF error ppm
R3 = gyro and torque direction

Record results of test

Terminate this position
Resynchronize AGC and CDU by FRESH START

Terminate this position

Recycle for additional positions

Fig. 1.4.2-1 (continued)
Initialize program. Set mode 07. Display latitude and azimuth. VERB 06 NOUN 41
Azimuth ± XXX.XX DEG
Latitude ± XX.XXX DEG

Is Azimuth and Latitude correct?

NO

VERB 06 ENTER

YES

Load correct azimuth and latitude
VERB 24 NOUN 41
ENTER
Azimuth ± XXX.XX ENTER
Latitude ± XX.XXX ENTER

Calculate coarse align angles to position stable member to preloaded orientation

(continued on next page)

Fig. 1.4.3-1 AGS Alignment Test Description
LGC OPERATIONS

Coarse align gimbals

Do calculated gimbal angles result in gimbal lock?

YES

Stay in coarse align display
NO ATT light

NO

Determine present SM misalignment and complete alignment by pulse torquing gyro

Sample IMU accelerometers every 0.5 sec
Compute gyro torquing angles required to hold \(Z_{SM} \) and \(Y_{SM} \) level with \(Z_{SM} \) in the direction of \(Z_{NB} \)

Have 5 sec elapsed?

NO

TERMINATE BY VERB 36
ENTER whenever test complete

NO

Is \(C(SENDOVER) = PNZ \)?

YES

SEND CDU ZERO

Fig. 1.4.3-1 (continued)
1.5 Performance Test Data Analysis

1.5.1 IRIG SF Data Analysis

The data for each position are displayed in R1 at the end of the running of each position in units of ppm. The gyro under test and the direction of torquing is displayed in R3 as follows:

- +1 X gyro positive scale factor
- -1 X gyro negative scale factor
- +2 Y gyro positive scale factor
- -2 Y gyro negative scale factor
- +3 Z gyro positive scale factor
- -3 Z gyro negative scale factor

Plus SF error is displayed with a + sign in R1. The scale factor is defined as $0.61798096 \text{sec/pulse} (1+SFE)$. The test should be run four times for each gyro in each direction and the results averaged. This is to smooth the effects of occasional 1 pulse irregularities in the CDU pulse rate.

1.5.2 Gyro drift data

The model equation used for gyro drift is:

$$W_d = D_B + D_I(SF)_I + D_S(SF)_S + D_O(SF)_O + D_{II}(SF)^2_I + D_{SS}(SF)^2_S$$

$$+ D_{OO}(SF)^2_O + D_{IS}(SF)_I(SF)_S + D_{IO}(SF)_I(SF)_O + D_{OS}(SF)_O(SF)_S$$

where subscripts I, S, and O refer to input, spin and output axes respectively.

W_d = gyro drift rate, defined as positive by the drift rate vector pointing along gyro input axis.

D_B = bias or non-acceleration sensitive drift rate

D_I = drift rate proportional to specific force along input axis

D_S = drift rate proportional to specific force along spin axis

D_O = drift rate proportional to specific force along output axis

D_{II} = drift rate proportional to specific force squared along input axis

1-43
The gyro drift performance test produces data on the NBD, ADSRA, ADIA and ADOA terms in the equation. The other terms are expected to contribute very little. The NBD, ADSRA and ADIA terms are the only ones compensated for by the in-flight gyro drift compensation program.

<table>
<thead>
<tr>
<th>Position</th>
<th>Stable Member Orientation</th>
<th>Drift Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X<sub>SM</sub> DOWN, Y<sub>SM</sub> SOUTH, Z<sub>SM</sub> WEST</td>
<td>DH<sub>1</sub> = NBDY - ADOAY</td>
</tr>
<tr>
<td>2</td>
<td>X<sub>SM</sub> DOWN, Y<sub>SM</sub> WEST, Z<sub>SM</sub> NORTH</td>
<td>DH<sub>2</sub> = NBDZ - ADOAZ, DV<sub>2</sub> = - NBDX + ADIAX</td>
</tr>
<tr>
<td>3</td>
<td>X<sub>SM</sub> SOUTH, Y<sub>SM</sub> WEST, Z<sub>SM</sub> DOWN</td>
<td>DH<sub>3</sub> = NBDX - ADOAX</td>
</tr>
<tr>
<td>4</td>
<td>X<sub>SM</sub> EAST, Y<sub>SM</sub> SOUTH, Z<sub>SM</sub> DOWN</td>
<td>DH<sub>4</sub> = NBDY + ADSRAY, DV<sub>4</sub> = NBDZ + ADIAZ</td>
</tr>
<tr>
<td>5</td>
<td>X<sub>SM</sub> WEST, Y<sub>SM</sub> UP, Z<sub>SM</sub> NORTH</td>
<td>No drift data for this position</td>
</tr>
<tr>
<td>Position</td>
<td>Stable Member Orientation</td>
<td>Drift Equation</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>6</td>
<td>X<sub>SM</sub> SOUTH</td>
<td>No drift data for this position</td>
</tr>
<tr>
<td></td>
<td>Y<sub>SM</sub> DOWN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z<sub>SM</sub> EAST</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>X<sub>SM</sub> NORTH</td>
<td>$D_{H7} = -NBDX + \frac{1}{\sqrt{2}} ADSRAX - \frac{1}{\sqrt{2}} ADOAX$</td>
</tr>
<tr>
<td></td>
<td>Y<sub>SM</sub> UP-WEST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z<sub>SM</sub> UP EAST</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>X<sub>SM</sub> EAST</td>
<td>$D_{H8} = \frac{1}{\sqrt{2}} (-NBDZ - NBDY) + 1/2 (ADIAZ - ADIAY)$</td>
</tr>
<tr>
<td></td>
<td>Y<sub>SM</sub> UP-NORTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z<sub>SM</sub> UP-SOUTH</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>X<sub>SM</sub> UP-EAST</td>
<td>$D_{H9} = \frac{1}{\sqrt{2}} (ADSRAY - ADSRAZ)$</td>
</tr>
<tr>
<td></td>
<td>Y<sub>SM</sub> UP-WEST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z<sub>SM</sub> SOUTH</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X<sub>SM</sub> UP-NORTH</td>
<td>$D_{H10} = \frac{1}{\sqrt{2}} (NBDY - NBDX) + 1/2 (ADIAY - ADIAX)$</td>
</tr>
<tr>
<td></td>
<td>Y<sub>SM</sub> UP-SOUTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z<sub>SM</sub> EAST</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>X<sub>SM</sub> NORTH</td>
<td>$D_{H11} = NBDX - ADOAX$</td>
</tr>
<tr>
<td></td>
<td>Y<sub>SM</sub> WEST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z<sub>SM</sub> UP</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>X<sub>SM</sub> UP</td>
<td>$D_{H12} = NBDY + ADOAY$</td>
</tr>
<tr>
<td></td>
<td>Y<sub>SM</sub> SOUTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z<sub>SM</sub> EAST</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>X<sub>SM</sub> UP</td>
<td>$D_{H13} = NBDZ + ADOAZ$</td>
</tr>
<tr>
<td></td>
<td>Y<sub>SM</sub> EAST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z<sub>SM</sub> NORTH</td>
<td></td>
</tr>
</tbody>
</table>
The equations for compensable drift terms in terms of the horizontal and vertical drift measurements are:

\[
\begin{align*}
NBDX &= \frac{1}{2} (DH_3 - DH_1) \\
NBDY &= \frac{1}{2} (DH_1 + DH_{12}) \\
NBDZ &= \frac{1}{2} (DH_2 + DH_{13}) \\
ADSRAX &= \sqrt{2} \left[DH_7 + \frac{1}{2} (DH_3 - DH_1) \right] - \frac{1}{2} (DH_{11} + DH_3) \\
ADSRAY &= DH_4 - \frac{1}{2} (DH_1 + DH_{12}) \\
ADSRAZ &= \sqrt{2} \left[DH_9 + \frac{1}{2} (DH_2 + DH_{13}) \right] + \frac{1}{2} (DH_{13} - DH_3) \\
ADIAX &= DV_2 + \frac{1}{2} (DH_3 - DH_1) \\
ADIAY &= 2 DH_{10} - \frac{1}{\sqrt{2}} DH_1 - \frac{1}{\sqrt{2}} DH_{12} \\
&\quad + DH_3 + DV_2 - \sqrt{2}DH_7 - \frac{1}{2} (DH_{12} - DH_1) \\
ADIAX &= DV_4 - \frac{1}{2} (DH_2 + DH_{13}) \\
ADOAX &= -\frac{1}{2} (DH_{11} + DH_3) \text{ (Not compensated)} \\
ADOAY &= \frac{1}{2} (DH_{12} - DH_1) \text{ (Not compensated)} \\
ADOAZ &= \frac{1}{2} (DH_{13} - DH_2) \text{ (Not compensated)}
\end{align*}
\]

1.5.3 Accelerometer Test Data Analysis

The complete accelerometer model equation is:

Specific Force Indicated = \(A_D + A_I(SF)_I + A_P(SF)_P + A_O(SF)_O + A_{II}(SF)_I^2 + A_{IP}(SF)_I(SF)_P + A_{IO}(SF)_I(SF)_O + A_{PO}(SF)_P(SF)_O \)

where subscripts \(I, P, \) and \(O \) refer to input, pendulous and output axes respectively.

\(A_B = \) bias coefficient, insensitive to specific forces
\(A_I = \) scale factor of instrument
\(A_P, A_O = \) cross coupling coefficients
\(A_{II} = \) specific force squared coefficient
\(A_{IP} = \) coefficient for the product of specific force along input and pendulous axes
$A_{10} = \text{coefficient for the product of specific force along input and output axes}$

$A_{PO} = \text{coefficient for the product of specific force along pendulous and output axes}$

The accelerometer test data are used to determine only the bias and scale factor coefficients. The other terms are not separately measured or compensated.

The simplified equation for the accelerometer model is:

Specific Force Indicated = Bias + Scale Factor \(\text{(Specific Force along input axis)}\)

The specific force used in the test is due to the gravity reaction acceleration. The comparison of the indicated magnitude of the gravity reaction acceleration and the known local gravity provides the calibration of the accelerometer. The scale factor error and bias are separated by reversing the direction of the specific force along the input axis.

For the X and Z accelerometers the orientation of the input axis parallel to the direction of local gravity is easily accomplished by use of the data from the other two accelerometers. For the Y accelerometer the gimbal configuration does not allow accurate positioning, therefore, data from the other two accelerometers is used in the data analysis to correct for input axis alignment errors.

<table>
<thead>
<tr>
<th>Position</th>
<th>Stable Member Orientation</th>
<th>Accelerometer Error Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>X$_{SM}$ UP</td>
<td>$g_{m1} = b_x + (1 - SFE)g$</td>
</tr>
<tr>
<td></td>
<td>Y$_{SM}$ SOUTH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z$_{SM}$ EAST</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X$_{SM}$ DOWN</td>
<td>$g_{m2} = b_x + (1 - SFE)(-g)$</td>
</tr>
<tr>
<td></td>
<td>Y$_{SM}$ WEST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z$_{SM}$ NORTH</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>X$_{SM}$ NORTH</td>
<td>$g_{m3} = b_z + (1 - SFE)g$</td>
</tr>
<tr>
<td></td>
<td>Y$_{SM}$ WEST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z$_{SM}$ UP</td>
<td></td>
</tr>
</tbody>
</table>
\[g_{m4} = b_z + (1 - SFE)(-g) \]
\[g_{m5} = b_y + (1 - SFE)g \]
\[g_{m6} = b_y + (1 - SFE)(-g) \]

\[g_m = \text{measured gravity reaction acceleration (cm/sec}^2\text{)} \]
\[g = \text{local gravity reaction acceleration (cm/sec}^2\text{)} \]
\[b_i = \text{bias of } i \text{ accelerometer (cm/sec}^2\text{)} \quad (i = x, y, z) \]
\[S_{Fi} = \text{scale factor of } i \text{ accelerometer in cm/sec/pulse} \]
\[SFE = \text{scale factor error in parts-per-million defined as positive when } S_{Fi} > \text{ideal scale factor} \]

For positions 5 and 6 the misalignment angle \(\theta_y \) between the Y accelerometer and the vertical shall be determined from pulse rate data from the other two accelerometers.

\[\theta_y = \sqrt{\theta_x^2 + \theta_z^2} \]
\[\theta_z = \frac{(\Delta V_x - \Delta V_{x,y}) S_{Fx}}{\Delta T g \text{ local}} \]
\[\theta_x = \frac{(\Delta V_z - \Delta V_{z,x}) S_{Fz}}{\Delta T g \text{ local}} \]

where \(\Delta V \) = number of velocity increments accumulated in \(\Delta T \)

\[\Delta V_i B_i = \frac{b_i \Delta T}{S_{Fi}} \]

1-48
\(g_{m5,6} \) will be modified by the misalignment \(\theta_y \) as follows:

\[
\begin{align*}
g_{m5}' &= g_{m5} \sec \theta_y 5 \\
g_{m6}' &= g_{m6} \sec \theta_y 6
\end{align*}
\]

\(g_{m5}' \) and \(g_{m6}' \) are used to determine Y accelerometer scale factor and bias error coefficients.

The equation for calculating scale factor error for the accelerometer is:

\[
SFE_1 = 1 - \frac{g_{m1}}{2 \ g_{\text{local}}} \times 10^6 \ \text{ppm}
\]

The equation for determining bias error for the accelerometer is:

\[
b_1 = \frac{g_{m1} + g_{m(i+1)}}{2} \ \text{cm/sec}^2
\]

1.5.4 AGS Alignment Check Data Analysis

The PGNCS produces no data for this check. The PGNCS is merely used as a reference for AGS. All analysis of the results will be done by GAEC.
R-557
SUNDANCE
(LUMINARY)
Section 1 (Rev. 1)

Internal:

P. Adler K. Kido K. Riebesell
R. Battin *J. Kingston P. Rye
E. Blanchard A. Kosmala J. Sapanaro
G. Cherry (3) W. Kupfer P. Sarda
E. Copps A. Laats C. Schulenberg
S. Copps L. Larson N. Sears
W. Day R. Larson J. Shillingford
S. Drake J. Lawrence W. Stameris
G. Edmonds D. Lickly G. Stubbs
P. Fellerman R. Lones J. Sollomala
J. Fleming F. Martin J. Sutherland
L. Gediman (30) W. Marscher J. Tanner
K. Glick H. McOuat R. Tinkham
K. Goodwin R. McKern K. Vincent
E. Grace V. Megna J. Vittek
K. Greene D. Millard F. Walsh
J. Henize J. E. Miller R. Weatherbee
P. Heinemann J. S. Miller P. Weissman
J. Heybl P. Mimno R. Werner
D. Hoag J. Nevins R. White
B. Ireland J. O'Connor W. Widnall
L. B. Johnson G. Ogletree M. Womble
M. Johnson P. Philliou Apollo Library (2)
M. Johnston R. Ragan MIT/IL Library (6)

*Letter of transmittial only.
<table>
<thead>
<tr>
<th>Agency</th>
<th>Address</th>
<th>Attns</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA/RASPO</td>
<td>NASA Daytona Beach Operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. Box 2500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daytona Beach, Florida 32015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. A. S. Lyman</td>
<td>(1)</td>
</tr>
<tr>
<td>NASA/HDQ</td>
<td>NASA Headquarters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600 Independence Avenue SW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, D. C. 20546</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: MAP-2</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>Attn: Mission Director, Code MA</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Attn: Robert Aller, Code MAO</td>
<td>(1)</td>
</tr>
<tr>
<td>NASA/I.EWIS</td>
<td>National Aeronautics and Space Administration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lewis Research Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleveland, Ohio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Library</td>
<td>(2)</td>
</tr>
<tr>
<td>NASA/FRC</td>
<td>National Aeronautics and Space Administration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flight Research Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edwards AFB, California</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Research Library</td>
<td>(1)</td>
</tr>
<tr>
<td>NASA/LRC</td>
<td>National Aeronautics and Space Administration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Langley Research Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Langley AFB, Virginia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. A. T. Mattson</td>
<td>(2)</td>
</tr>
<tr>
<td>NASA/GSFC</td>
<td>National Aeronautics and Space Administration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goddard Space Flight Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Greenbelt, Maryland</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. Paul Pashby, Code 813</td>
<td>(2)</td>
</tr>
<tr>
<td>GAEC</td>
<td>Grumman Aircraft Engineering Corporation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bethpage, Long Island, New York</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Mr. J. Marino</td>
<td>(1R)</td>
</tr>
<tr>
<td></td>
<td>Mr. C. Tillman</td>
<td>(1R)</td>
</tr>
<tr>
<td></td>
<td>Mr. F. Wood</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Mr. H. Sherman</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Mr. R. Pratt</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>Mr. R. Sidor</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Mr. R. Kress</td>
<td>(1)</td>
</tr>
<tr>
<td>NAR</td>
<td>North American Rockwell Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Space and Information Systems Division</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12214 Lakewood Boulevard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Downey, California 90241</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attn: Apollo Data Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dept. 096-340</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Building 3, CA 99</td>
<td></td>
</tr>
<tr>
<td>NASA/RASPO</td>
<td>National Aeronautics and Space Administration (1)</td>
<td></td>
</tr>
<tr>
<td>GAEC</td>
<td>National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer (1)</td>
<td></td>
</tr>
<tr>
<td>ACED</td>
<td>National Aeronautics and Space Administration Resident Apollo Spacecraft Program Officer (1)</td>
<td></td>
</tr>
<tr>
<td>WSMR</td>
<td>National Aeronautics and Space Administration Post Office Drawer MM (2)</td>
<td></td>
</tr>
<tr>
<td>MSFC</td>
<td>National Aeronautics and Space Administration George C. Marshall Space Flight Center (21)</td>
<td></td>
</tr>
<tr>
<td>MSC</td>
<td>National Aeronautics and Space Administration Manned Spacecraft Center (280 + 2R)</td>
<td></td>
</tr>
<tr>
<td>BELLCOMM</td>
<td>Bellcomm, Inc. (6)</td>
<td></td>
</tr>
<tr>
<td>LINK</td>
<td>LINK Group, GPSI SIMCOM (3)</td>
<td></td>
</tr>
<tr>
<td>TRW</td>
<td>Gilbert H. Friedman (5)</td>
<td></td>
</tr>
</tbody>
</table>