GUIDANCE SYSTEM OPERATIONS PLAN
FOR MANNED CM EARTH ORBITAL AND
LUNAR MISSIONS USING
PROGRAM COLOSSUS I (REV. 237)
AND PROGRAM COLOSSUS IA (REV. 249)
SECTION 2 DATA LINKS
(Rev. 2)

DECEMBER 1968
ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-23870, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administration through Contract NAS 9-4065 with the Instrumentation Laboratory, Massachusetts Institute of Technology, Cambridge, Mass.
GUIDANCE SYSTEM OPERATIONS PLAN
FOR MANNED CM EARTH ORBITAL OR
LUNAR MISSIONS USING
PROGRAM COLOSSUS

SECTION 2 DATA LINKS

Signatures appearing on this page designate
approval of this document by NASA/MSC.

Approved:_________________________ Date: 7/6/69
Thomas F. Gibson
Asst. Chief, Flight Software Branch
Manned Spacecraft Center, NASA

Approved:_________________________ Date: 7/4/69
James C. Stokes, Jr.
Chief, Flight Software Branch
Manned Spacecraft Center, NASA

Approved:_________________________ Date: 7/30/69
Lynwood C. Dunseith
Chief, Flight Support Division
Manned Spacecraft Center, NASA
Date: 10 June 1968

REVISION INDEX COVER SHEET

GUIDANCE SYSTEM OPERATIONS PLAN

GSOP # R-577 Title: For Manned CM Earth Orbital and Lunar Missions Using Program COLOSSUS

Section 2 Title: Data Links (Revision 1)

This publication, a complete new revision (Rev. 1), incorporates revisions and additions as indicated below:

Revision 1

PCR-(PCN) Description of Change

PCR-154 Update GSOP, Section 2, for typing errors, scaling changes, extra detail and description.

PCR-157 Lambert target updates conform to verb 71 format.

PCR-172(MIT-101)* Change word-order of Entry/Update list.

PCR-174(MIT-108)* LANDMARK I.D. added to P22 downlist.

PCR-422(MIT-146)* Words 20 and 33 of the Entry/Update list were interchanged. Word 100 of the same list is now GAMMA (EI) and Range for Initialization.

PCN-417* Use of ENDSAFE terminated.

Because of the numerous changes required by PCR #154 in Revision 1, there will be no PCR/PCN reference information at the bottom of any page which changed as a result of PCR #154 only.

Additional UPLINK information resulted in the following new sections:

2.1.5 Use of the Contiguous Block Update Verb.
2.1.5.1 CMC CSM/LM State Vector Update.
2.1.5.2 CMC Desired REFSMMAT Update.
2.1.5.3 CMC External DELTA V Update.
2.1.5.4 CMC Retrofire External DELTA V Update.
2.1.5.5 CMC Entry Update.
2.1.5.6 CMC Lambert Target Update.
2.1.5.7 CMC Lambert Return to Earth Update.

*Indicates an MIT Program Change Notice (PCN)
REVISION INDEX COVER SHEET
GUIDANCE SYSTEM OPERATIONS PLAN

GSOP # R-577 Title: For Manned CM Earth Orbital and Lunar Missions Using Program COLOSSUS 1 (Rev 237)

Section # 2 Title: Data Links (Revision 2)

This publication, a complete new revision (Rev 2), is expanded in many places over the previous one (Rev 1, dated June 1968). Only changes in specifications, resulting from the PCR/PCN information listed below, will be indicated by a solid-black line at the edge of the page along with the appropriate reference number at the bottom of the page. Any editorial changes will be marked by a vertical series of black dots at the page's edge.

<table>
<thead>
<tr>
<th>PCR/PCN</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR 439.1*</td>
<td>Deleted logic in P52 to check status of preferred orientation flag. It is not required now in the Preferred REFSMMAT Update.</td>
</tr>
<tr>
<td>PCR 237</td>
<td>Update GSOP, Section 2 Rev 1, for typing errors, scaling changes additions and revisions.</td>
</tr>
<tr>
<td>PCN 585*</td>
<td>Scaling in word 27b (Rend/Pre) should be changed to, "multiply by 18.52". FAILREG +2 may also contain a first digit of 1 or 5. Delete word "RESTART", IMODES 30, bit 7.</td>
</tr>
</tbody>
</table>

* Indicates an MIT Program Change Notice (PCN).
R-577

Guidance System Operations Plan For Manned
CM Earth Orbital and Lunar Missions Using
Program COLOSSUS 1 (Rev 237)

Section 2 Data Links (Revision 2)

<table>
<thead>
<tr>
<th>Section</th>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>GNCS Data Links (Preface)</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1</td>
<td>Digital Uplink to CMC (P27)</td>
<td>2-2</td>
</tr>
<tr>
<td>2.1.1</td>
<td>CM Liftoff Time Increment</td>
<td>2-5</td>
</tr>
<tr>
<td>2.1.1.1</td>
<td>Program 27 Verification</td>
<td>2-5</td>
</tr>
<tr>
<td>2.1.1.2</td>
<td>Data Verification and Termination</td>
<td>2-5</td>
</tr>
<tr>
<td>2.1.1.2.1</td>
<td>Accept All the Update Data Entered</td>
<td>2-6</td>
</tr>
<tr>
<td>2.1.1.2.2</td>
<td>Modify Some or All of the Update Data</td>
<td>2-6</td>
</tr>
<tr>
<td>2.1.1.2.3</td>
<td>Reject All the Update Data</td>
<td>2-7</td>
</tr>
<tr>
<td>2.1.1.2.4</td>
<td>Effects and Use of VERB 33 ENTER</td>
<td>2-7</td>
</tr>
<tr>
<td>2.1.2</td>
<td>CM Contiguous Block Update</td>
<td>2-8</td>
</tr>
<tr>
<td>2.1.2.1</td>
<td>VERB 71 Data Entry Format</td>
<td>2-8</td>
</tr>
<tr>
<td>2.1.2.2</td>
<td>Data Load Requirements by Ground Station</td>
<td>2-9</td>
</tr>
<tr>
<td>2.1.2.2.1</td>
<td>Index Value</td>
<td>2-9</td>
</tr>
<tr>
<td>2.1.2.2.2</td>
<td>E Memory Address Value</td>
<td>2-9</td>
</tr>
<tr>
<td>2.1.2.2.3</td>
<td>Update Data</td>
<td>2-10</td>
</tr>
<tr>
<td>2.1.2.3</td>
<td>VERB 71 Contiguous Block Update Verification</td>
<td>2-10</td>
</tr>
<tr>
<td>2.1.3</td>
<td>CM Scatter Update</td>
<td>2-10</td>
</tr>
<tr>
<td>2.1.3.1</td>
<td>VERB 72 Data Entry Format</td>
<td>2-11</td>
</tr>
<tr>
<td>2.1.3.2</td>
<td>Data Load Requirements by Ground Station</td>
<td>2-11</td>
</tr>
<tr>
<td>2.1.3.3</td>
<td>VERB 72 Scatter Update Verification</td>
<td>2-12</td>
</tr>
<tr>
<td>2.1.4</td>
<td>CMC Octal Clock Increment</td>
<td>2-12</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Use of the Contiguous Block Update VERB</td>
<td>2-13</td>
</tr>
<tr>
<td>2.1.5.1</td>
<td>CMC CSM/LM State Vector Update</td>
<td>2-13</td>
</tr>
<tr>
<td>2.1.5.2</td>
<td>CMC Desired REFSMMAT Update</td>
<td>2-15</td>
</tr>
<tr>
<td>2.1.5.3</td>
<td>CMC REFSMMAT Update</td>
<td>2-16</td>
</tr>
<tr>
<td>2.1.5.4</td>
<td>CMC External Delta V Update</td>
<td>2-17</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.1,5.5</td>
<td>CMC Retrofire External Delta V Update</td>
<td>2-18</td>
</tr>
<tr>
<td>2.1,5.6</td>
<td>CMC Entry Update</td>
<td>2-18</td>
</tr>
<tr>
<td>2.1,5.7</td>
<td>CMC LAMBERT Target Update</td>
<td>2-19</td>
</tr>
<tr>
<td>2.1,5.8</td>
<td>CMC Landing - Site Vector Update</td>
<td>2-20</td>
</tr>
<tr>
<td>2.2</td>
<td>CMC Digital Downlink</td>
<td>2-21</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Erasable Memory Dump Downlist</td>
<td>2-22</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Standard Downlists</td>
<td>2-23</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Powered List (parameter assignment)</td>
<td>2-25</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Powered List (parameter description)</td>
<td>2-29</td>
</tr>
<tr>
<td>2.2.2.3</td>
<td>Coast and Align List (parameter assignment)</td>
<td>2-91</td>
</tr>
<tr>
<td>2.2.2.4</td>
<td>Coast and Align List (parameter description)</td>
<td>2-95</td>
</tr>
<tr>
<td>2.2.2.5</td>
<td>Rendezvous and Prethrust List (parameter assignment)</td>
<td>2-99</td>
</tr>
<tr>
<td>2.2.2.6</td>
<td>Rendezvous and Prethrust List (parameter description)</td>
<td>2-103</td>
</tr>
<tr>
<td>2.2.2.7</td>
<td>Entry and Update List (parameter assignment)</td>
<td>2-109</td>
</tr>
<tr>
<td>2.2.2.8</td>
<td>Entry and Update List (parameter description)</td>
<td>2-113</td>
</tr>
<tr>
<td>2.2.2.9</td>
<td>Program 22 List (parameter assignment)</td>
<td>2-119</td>
</tr>
<tr>
<td>2.2.2.10</td>
<td>Program 22 List (parameter description)</td>
<td>2-123</td>
</tr>
</tbody>
</table>
2. GNCS Data Links (Preface)

The Guidance System Operations Plan is published as seven separate volumes (sections) as follows:

Section 1 Pre-Launch
Section 2 Data Links
Section 3 Digital Autopilots
Section 4 Operational Modes
Section 5 Guidance Equations
Section 6 Control Data
Section 7 Error Analyses

This volume, Section 2 of the Guidance System Operations Plan for Manned CM Earth Orbital and Lunar Missions using Program COLOSSUS, 1 (Rev 237), describes the GNCS Data Links: Digital Uplink to CMC (P27), CM Digital Downlink for use on these missions.

This volume constitutes a control document to govern the structure of Uplink and Downlink Programs in COLOSSUS. Revisions to this plan which reflect changes in the above control items require approval from NASA.

The material of Section 2 of this GSOP is arranged:

2.1 Digital Uplink to CMC (P27)
2.2 CMC Digital Downlink
2.1 Digital Uplink to CMC (P27)

By means of the CMC UPLINK, ground control can insert data or issue instructions to the CMC in the same manner that these functions are normally performed by the spacecraft crew in using the DSKY keyboard. The CMC is programmed to accept the following UPLINK inputs:

1. LIFTOFF TIME INCREMENT: Provides ground capability to increment or decrement the CMC clock, LM and CSM state vector times and TEPHEM(time) with a double precision octal time value, scaled centiseconds/2^{28}.

2. CONTIGUOUS BLOCK UPDATE: Provides ground capability to update, within certain bounds, from 1 to 18 consecutive E memory registers in the same EBANK.

3. SCATTER UPDATE: Provides ground capability to update from 1 to 9 non-consecutive E memory registers in the same or different EBANKs.

4. OCTAL CLOCK INCREMENT: Provides ground capability to increment or decrement the CMC clock with a double precision octal time value scaled centiseconds/2^{28}.

All information received by the CMC from the uplink is in the form of keyboard characters. Each character is assigned an identifying code number called its character code. Each character code transmitted to the CMC is sent as a triply redundant uplink word preceded by a leading "1" bit. Thus, if C is the 5-bit character code, then the 16 bit uplink word has the form:

1 C C

where C denotes the bit-by-bit complement of C. (Table 2-1 defines all the legal input keycodes.) To these 16 bits of information the ground adds a 3-bit code specifying the system aboard the spacecraft which is to be the final recipient of the data and a 3-bit code indicating the spacecraft which should receive the information. The 22 total bits are sub-bit encoded (replacing each bit with a 5-bit code for transmission). If the message is received and successfully decoded, the on-board receiver will send back an 8-bit "message accepted pulse" to the ground and shift the original 16 bits of the uplink word to the CMC (1 C C). The leading "1" bit causes an interrupt within the CMC after all 16 bits have been shifted from the uplink receiver.

Any ground command sequence normally transmitted via the uplink may be duplicated by the astronaut via the keyboard. All reference to uplink words used in
<table>
<thead>
<tr>
<th>Character</th>
<th>Uplink Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 10000 01111 10000</td>
</tr>
<tr>
<td>1</td>
<td>1 00001 11110 00001</td>
</tr>
<tr>
<td>2</td>
<td>1 00010 11101 00010</td>
</tr>
<tr>
<td>3</td>
<td>1 00011 11100 00011</td>
</tr>
<tr>
<td>4</td>
<td>1 00100 11011 00100</td>
</tr>
<tr>
<td>5</td>
<td>1 00101 11010 00101</td>
</tr>
<tr>
<td>6</td>
<td>1 00110 11001 00110</td>
</tr>
<tr>
<td>7</td>
<td>1 00111 11000 00111</td>
</tr>
<tr>
<td>8</td>
<td>1 01000 10111 01000</td>
</tr>
<tr>
<td>9</td>
<td>1 01001 10110 01001</td>
</tr>
<tr>
<td>VERB</td>
<td>1 10001 01110 10001</td>
</tr>
<tr>
<td>NOUN</td>
<td>1 11111 00000 11111</td>
</tr>
<tr>
<td>ENTER</td>
<td>1 11100 00011 11100</td>
</tr>
<tr>
<td>ERROR RESET</td>
<td>1 10010 01101 10010</td>
</tr>
<tr>
<td>CLEAR</td>
<td>1 11110 00001 11110</td>
</tr>
<tr>
<td>KEY RELEASE</td>
<td>1 11001 00110 11001</td>
</tr>
<tr>
<td>+</td>
<td>1 11010 00101 11010</td>
</tr>
<tr>
<td>-</td>
<td>1 11011 00100 11011</td>
</tr>
</tbody>
</table>

NOTE: It is good operational procedure to end every uplink message with a KEY RELEASE.
this section are in the form transmitted from the uplink receiver to the CMC. Therefore, they do not contain the vehicle or subsystem addresses added by the ground facilities.

During update program (P27) execution, the following registers may be monitored via the P27 Downlink List:

1. UPBUFF - Contains all input data, including index value, ECADR value(s) and update parameters. There are 20 (decimal) UPBUFF registers numbered sequentially from UPBUFF + 0 to UPBUFF + 19D where the D indicates decimal notation.

2. UPVERB - Contains second digit of update verb being used, e.g., "0" for Verb 70, "1" for Verb 71, etc.

3. UPOLDMOD - Contains value of program interrupted by P27, e.g., 00 and 02 for programs 00 and 02; program 27 is inhibited from interrupting any other programs.*

4. COMPNUMB - Contains value of number of components to be processed by P27. Once set, it remains fixed during complete update operation.

5. UPCOUNT - Used for indexing UPBUFF. The contents of this register may vary from one (1) to the value contained in COMPNUMB. This register always contains the octal identifier of the parameter that is being loaded.

If the CMC received an improperly coded word from the uplink receiver during the load (i.e., not "1 CEC") it sets BIT 4 of FLAGWRD7 to "one", which is transmitted via Downlink to the ground station. When this occurs, the ground station should correct the transmission by sending the following uplink word:

\[
1 \text{ 00000 00000 00000}
\]

(which clears the INLINK register) and follow this by transmitting "ERROR RESET" (which will set BIT 4 of FLAGWRD7 to zero).** If "CLEAR" is transmitted immediately following "ERROR RESET", the ground station may begin the corrected transmission with the first word of the 5 octal digits that was sent when the alarm condition occurred. The "CLEAR" button is used after the "ERROR RESET" to blank the data display register (R1). The ground station should then continue the update by using UPCOUNT to indicate the specific parameter being processed and resume the update function by re-transmitting the parameter beginning with the first octal character.

* It is possible to update when program lights are blanked by a FRESH START (MODREG is 777777).

** "ERROR RESET" must be sent via uplink to set BIT4 of FLAGWRD7 to zero. DSKY "ERROR RESET" does no affect this bit.
If the ground wishes to continue loading without transmitting the "CLEAR" code it must determine which character was in error when failure occurred, and resume uplink transmission from the point of failure. This may be determined by monitoring the display in R1 as well as the contents of UPCOUNT.

This program may be entered only from P00, or P02 for the CM. If the CMC is not in one of the programs indicated above when any update VERB is sent uplink, the "Operator Error" lamp will be illuminated, the uplink activity light will be turned "OFF" and the computer will ignore the request, via the specified update VERB, to transfer control to P27.

2.1.1 CM LIFTOFF TIME INCREMENT

To initiate a double precision LIFTOFF octal time increment the ground station transmits "VERB70ENTER".

2.1.1.1 Program 27 Verification

The ground station should then await confirmation via Downlink that the CMC is in Program 27.

If P27 is entered, the CMC puts the old program number in UPOLDMOD, sets UPCOUNT to "one", selects the P27 Downlink List for Downlink transmission and flashes V21N01 which requests a data load for UPBUFF + 0.

If P27 is entered for a Verb 70 update, 0 is placed in UPVERB and 2 is placed in COMPNUMB. Following P27 verification and confirmation of UPVERB and COMPNUMB sent via Downlink, the ground station should transmit the double precision octal time XXXXX ENTER XXXXX ENTER, where time is in centiseconds scaled at 2^{28}. A negative time value (decrement) should be transmitted in one's complement form. It should be noted that UPCOUNT is incremented by 1 after the ENTER following the most significant part of the double precision time. P27 uses the contents of UPCOUNT to calculate the next UPBUFF location for the V21N01.

2.1.1.2 Data Verification and Termination

After the final ENTER associated with the last update has been transmitted, P27 flashes V21N02 which is a request to the ground station to verify all the update data and to perform one of the following functions:

1. Accept all the update data entered
2. Modify some or all of the update data
3. Reject all of the update data
2.1.1.2.1 Accept All the Update Data Entered

If the ground station verifies that the content of the UPBUFF register is correct, it should transmit "VERB33ENTER" to signal P27 to process the update data. For the Verb 70 update, P27 inverts BIT 3 of FLAGWRD7 and determines if the State Vector data is being used by the orbital integration routine. If so, further P27 instruction executions are delayed (P27 dormant) until the integration routine is complete. A display of "27" in the program lights, along with a ground verification that BIT3 of FLAGWRD7 has been inverted and that the operator error light is "OFF", should indicate to the operator that the completion of P27 is temporarily being delayed.

After P27 is re-activated or if it initially finds that the integration routine is not in use, it will inhibit other routines from using State Vector data and complete the data verification requirements for the specific update Verb in use. (For each Verb, see appropriate verification section.)

2.1.1.2.1.1 Verb 70 Double Precision Time Verification

Program 27 verifies that the double precision octal time can be subtracted from the CMC clock without causing overflow. (For this operation two of the UPBUFF registers, UPBUFF + 18D and 19D, are used as temporary buffers for TIME2 and TIME1.) If the double precision input time can be subtracted from the CMC clock without causing overflow, P27 proceeds to increment TEPHEM and decrement the CMC clock, the CSM State Vector time, and the LM State Vector time. Program 27 will then turn the uplink activity light "OFF", replace the downlink list code in DNLSTADR with the code for the previous program, release the State Vector data for other routines, and reinstate the previous program.

If, on the other hand, an overflow would occur, P27 will leave the CMC clock intact and turn the operator error light "ON". It will then turn the uplink activity light "OFF", replace the downlink list code in DNLSTADR with the code for the previous program, release the State Vector data, and reinstate the previous program.

2.1.1.2.2 Modify Some or All of the Update Data

If during the verification time some of the UPBUFF registers are found to be in error, the ground station may make corrections by either of the following methods:

a. Individual parameters in UPBUFF + 0 to UPBUFF + 19D may be
changed by sending a two digit octal identifier followed by the ENTER code. For example, if input word 2 (UPBUFF+1) required change, the ground station would transmit "02ENTER". This causes P27 to display the UPBUFF+1 address in R3 and flash V21N01, requesting a new octal data load from the ground. After transmission of the data and its ENTER code, P27 repeats the V21N02 flash to request data acceptance, modification or rejection (section 2.1.1.2). NOTE: If the octal identifier is ≤ 0 or > COMPNUMB, P27 will continue the V21N02 flash and completely disregard the value just entered. It should also be noted that the contents of UPCOUNT is never changed during line by line correction.

b. If several parameters are to be modified, the ground station may change each separately as in step "a" above, or it may choose to terminate and re-initiate the load. To terminate the load the ground must transmit "VERB34ENTER" which will cause the CMC to return to the program it was in before the update was initiated. (P27 turns the uplink activity light "OFF", and switches to the previous Downlink list before returning control to the other program.)

To resume its update the ground station would re-transmit the update VERB followed by the complete update load.

2.1.1.2.3. Reject All the Update Data
Update data may be rejected at any time by terminating a load. This is accomplished with the VERB34ENTER sequence described in part "b" of section 2.1.1.2.2 above (first paragraph).

2.1.1.2.4 Effects and Use of "VERB33ENTER"

1. During data loads and prior to the V21N02 flash, transmission of VERB33ENTER will be ignored by P27.

2. During V21N02 flashing, transmission of VERB33ENTER will initiate the procedure described in section 2.1.1.2.1.

3. If line by line correction is initiated (section 2.1.1.2.2), transmission of VERB33ENTER after the octal identifier has been entered will be ignored by P27.
2.1.2 CM Contiguous Block Update

To initiate a contiguous E-memory update the ground station should transmit "VERB71ENTER".

Before sending the update data the ground station should perform Program 27 verification as defined in the first three paragraphs of section 2.1.1.1. If P27 is entered, 1 is placed in UPVERB and in UP_COUNT.

The verb 71 data format is defined in section 2.1.2.1 below and the data load requirements are described in section 2.1.2.2.

2.1.2.1 VERB71 Data Entry Format

The VERB71 update data format is as follows (all Es represent ENTERs):

\[
\begin{array}{cccc}
I & I & E \\
X & X & X & X & X & E \\
X & X & X & X & X & E \\
. & & & & & \\
. & & & & & \\
X & X & X & X & X & E \\
\end{array}
\]

where:

1. \(3 \leq II \leq 24\) octal. This is the index value used by P27 to process the update data. The index value represents the total number of numeric quantities to be loaded, including the index value itself, the starting address (ECADR) and the update parameters(s). The minimum value of 3 is for a single update parameter load. A maximum value of 24 octal is allowed since the UPBUFF capacity is a 20 (decimal) register buffer for P27. This value represents a maximum of 18 update parameters in addition to the index count and the starting E memory address.

2. AAAA is the first E memory address (ECADR) of the update block to be processed. Bits 1-8 indicate the relative address \((0-377_{8})\) within the selected EBANK and bits 9-11 identify the desired EBANK \((0-7)\). Also, for one data load operation, all update parameters must ultimately be stored in the same EBANK. Therefore, the starting address and the length of the block must be chosen so that the complete load is contained in the same EBANK; i.e., \((\text{bits} 8-1 \text{ of AAAA}) + II - 3\) must be \(\leq 377\) octal.
3. X X X X X is octal data which is to be loaded. This data is stored in sequential order in UPBUFF+2 and following, up to UPBUFF+19D. Scaling of the data must be the same as that of the internal CMC registers.

2.1.2.2 Data Load Requirements by Ground Station

Following Program 27 verification (V21N01 flashes with the UPBUFF+0 address displayed in R3) the ground station should enter the update data in the manner described below.

2.1.2.2.1 Index Value

The index value I I should be entered as an octal number and visually verified (displayed in R1) prior to transmitting the ENTER code. This value should be within the specified limits (see part 1 section 2.1.2.1 for format).

If an index value < 3 or > 24 octal is erroneously keyed-in followed by the ENTER code, P27 will reject the value and will continue to flash V21N01 until the ground station enters an index value within the specified limits. (Entry of a legal value is indicated when the UPBUFF-1 address value is displayed in R3 and UPCOUNT contains a 2).

If a legal index value is keyed-in but is found to be in error (displayed in R1) before the ENTER code is transmitted, the operator may correct his error by depressing the "CLEAR" key and re-transmitting the new index value followed by the ENTER code. A legally entered value is stored in UPBUFF+0 and COMPNUMB. UPCOUNT is incremented by 1, the next UPBUFF location is computed and V21N01 continues to flash indicating a request for an ECADR load.

If, however, the ground station operator loads a legal index value followed by the ENTER code and then discovers the numeric value to be incorrect (UPBUFF+0 display), then the only means of recovery is to terminate the load (VERB34ENTER) and re-initiate the update VERB. This procedure is necessary since invalid index values cannot be changed if entered in COMPNUMB and will therefore result in an incorrect update if it is not immediately modified.

2.1.2.2.2 E Memory Address Value

The second octal data word to be entered must be the first E memory address (ECADR) of the update data block.

The ENTER code following the ECADR causes P27 to store this value in UPBUFF+1, increment UPCOUNT by 1, compute the next UPBUFF location and continue the V21N01 flash which requests an update data load.
2.1.2.3 Update Data

The update parameters which will be stored in sequential E memory locations beginning with a legitimate E memory address (ECADR), as defined in part 2 of section 2.1.2.1, may be loaded in two separate ways.

1. Each octal value may be individually entered and visually verified (address of data is displayed in R3 and data is displayed in R1) prior to transmitting the ENTER code.

If data is in error the operator may depress the "CLEAR" key and retransmit the correct octal value followed by the ENTER code. This code causes P27 to store the data in the UPBUFF address specified in R3. If more data follows, UPCOUNT is incremented by 1, the next UPBUFF location is computed and V21N01 continues to flash.

This method of input allows the ground station to make immediate corrections if data errors are detected and to visually verify that each data word is loaded into its specified E memory location.

2. The second method of input is to transmit all the octal update data as quickly as possible and then perform a visual verification of all the data in the UPBUFF registers as specified in section 2.1.1.2.

2.1.2.3 VERB71 Contiguous Block Update Verification

The last ENTER of the update sequence causes P27 to flash V21N02. This is a request to the ground station to accept, modify or completely reject the data load as specified in 2.1.1.2 sections.

VERB33ENTER also causes P27 to check the validity of the ECADR value stored in UPBUFF+1 (this value must meet the requirements specified in part 2 of section 2.1.2.1). If the ECADR value is illegal, P27 rejects all input data, replaces Program 27 with the previous program value, turns the uplink activity light "OFF", turns the operator error light "ON" and switches to the Downlink list for the previous program.

A valid ECADR causes P27 to transfer all the update data from the UPBUFF registers into the specified E memory registers, replace program 27 with the previous program value, turn the uplink activity light "OFF", switch to the Downlink list for the previous program and release the State Vector data.

2.1.3 CM Scatter Update

To initiate an E memory update in non-contiguous E memory locations the ground station should transmit "VERB72ENTER".

Before sending the update data the ground station should perform Program 27 verification as defined in the first three paragraphs of section 2.1.1.1.
If P27 is entered for a VERB72 update, a 2 is placed in UPVERB and a 1 in UPCOUNT. Following P27 verification the ground station performs this update exactly as described for the VERB71 updates. The differences in these two update verbs are noted in the following section.

2.1.3.1 VERB72 Data Entry Format

The VERB72 update format is defined as follows:

I I E
A A A A E
X X X X X E
A A A A E
X X X X X E

A A A A E
X X X X X E

where:

1. \(3 \leq I I \leq 24\) octal. The difference between this index value and the VERB71 index value is that this value must always be odd. This is due to the fact that each update parameter must have its specified E memory address. Thus, the index count includes itself and up to 9 pairs of update words. An even number index value, although accepted at this point in the procedure, will cause rejection of VERB72 data as indicated in section 2.1.3.3. Additionally, Program 27 is replaced with the previous program value, the uplink activity light is turned "OFF", the operator error light is turned "ON", the State Vector data is released and the Downlink list is switched for use by the previous program.

2. All A A A As represent the ECADRs. (Each A A A A is the ECADR of the register to be loaded with the X X X X immediately following.) Note that update data entered via VERB72 may be loaded into different EBANKs.

3. All X X X X Xs are in octal and scaled the same as the internal CMC registers.

2.1.3.2 Data Load Requirements by Ground Station

The load requirements of VERB72 are identical to VERB71 (see sections 2.1.2.2 and 2.1.2.1 through 2.1.2.2.3).
2.1.3.3 VERB72 Scatter Update Verification

 The last ENTER of the update sequence will cause P27 to flash V21N02. This is a request to the ground to accept, modify or completely reject the data load as specified in 2.1.1.2 sections.

 VERB33ENTER also causes P27 to check the COMPNUMB value and determine if each ECADR value is legal (see section 2.1.2.1 part 2). If COMPNUMB is even or if any ECADR value is illegal P27 will perform exactly as specified in the second paragraph of section 2.1.2.3.

 If, however, COMPNUMB and all ECADRs are valid P27 will perform exactly as specified in the third paragraph of section 2.1.2.3.

2.1.4 CMC Octal Clock Increment

 To initiate a double precision octal time increment the ground station transmits "VERB73ENTER".

 The loading procedure for this update is identical to the VERB70 update defined in section 2.1.1 except that 3 is placed in UPVERB instead of 0.

 If the update is acceptable, it is immediately used to increment the clock (i.e., positive double precision time is added to the clock). No delay is encountered if the orbital integration routine is in use since the CSM and LM state vector time registers and the TEPHEM register are not modified.
2.1.5 Use of the Contiguous Block Update VERB

VERB 71, defined in section 2.1.2, can be used to perform the following updates:

1. CMC CSM/LM STATE VECTOR UPDATE
2. CMC DESIRED REFSSMMAI UPDATE
3. CMC REFSSMMAI UPDATE
4. CMC EXTERNAL DELTA V UPDATE
5. CMC RETROFI RE EXTERNAL DELTA V UPDATE
6. CMC ENTRY UPDATE
7. CMC LAMBERT TARGET UPDATE
8. CMC LANDING SITE VECTOR UPDATE

In defining each of these updates, it is assumed that the ground station has transmitted VERB71 ENTER and performed Program 27 verification as required prior to transmittal of the index value, ECADR and update parameters. It is also assumed that final verification of each update will be done as specified in section 2.1.2.3.

2.1.5.1 CMC CSM/LM STATE VECTOR UPDATE

This data consists of a single precision state vector identifier, three (3) double precision components of position, three (3) double precision components of velocity and a double precision time. The identifier (UPSVFLAG) indicates CSM or LM and whether coordinates are earth-centered or moon-centered as follows:

1 = CSM earth-centered
-1 = LM earth-centered *

2 = CSM moon-centered
-2 = LM moon-centered

Note that the CMC, at the next permanent memory state-integration, may change the origin, based upon computed position. The position and velocity components should be in reference coordinates scaled as follows:

<table>
<thead>
<tr>
<th></th>
<th>earth-centered</th>
<th>moon-centered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>meters/2^{29}</td>
<td>meters/2^{27}</td>
</tr>
<tr>
<td>Velocity</td>
<td>(meters/centisecond)/2^{7}</td>
<td>(meters/centisecond)/2^{5}</td>
</tr>
</tbody>
</table>

The time associated with the state vector should be relative to CMC clock zero. The identifier is scaled units/2^{14}. Time is scaled centiseconds/2^{28}.

The CMC is a fixed point machine with the point just to the left of the most significant bit.

The scaling indicated above will be sufficient to force the 3 components of position and the 3 components of velocity and time to numbers less than one.

To form the double precision quantities ready for coding and transmission, the scaled magnitudes of time and each component of position and velocity should be expressed as two binary words as follows:

*If a quantity other than 0, -0, 2 or -2 is loaded into UPSVFLAG, the data will also be interpreted as earth-centered. A 0 or -0 will update the UPSVFLAG erasable but the CMC will not perform a state vector update. In the other numeric cases a valid state vector update will be performed (earth-center).
Each X above represents a binary bit of the appropriate magnitude, the place value of which is indicated below the corresponding X. Once the magnitude of the component is accounted for in the above 28 X's, the sign must be considered.

If the component is positive, the words remain as formed; if the component is negative, the "1s complement" of the 2 words is used (all 1's are replaced by 0's and all 0's by 1's.)

The first word is then transformed into a 5 character octal word. The first character is the octal equivalent of the first three bits, the second character is the octal equivalent of the next three bits, etc. This word is referred to as the "most significant part" of data in the text below. Similarly, the second word is transformed into a 5 character octal word which is the "least significant part" of the data. Table 2-1 lists all the uplink characters with their corresponding binary format.

The CMC CSM/LM STATE VECTOR UPDATE data must be sent in the following sequence:

<table>
<thead>
<tr>
<th>Octal Identifier</th>
<th>Data Value</th>
<th>Data Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 21₈</td>
<td>(index value) ENTER</td>
<td></td>
</tr>
<tr>
<td>2 AAAA</td>
<td>(ECADR - 1501) ENTER</td>
<td></td>
</tr>
<tr>
<td>3 XXXXX</td>
<td>(identifier) ENTER</td>
<td></td>
</tr>
<tr>
<td>4 XXXXX</td>
<td>(most sig. part of X position) ENTER</td>
<td></td>
</tr>
<tr>
<td>5 XXXXX</td>
<td>(least sig. part of X position) ENTER</td>
<td></td>
</tr>
<tr>
<td>6 XXXXX</td>
<td>(most sig. part of Y position) ENTER</td>
<td></td>
</tr>
<tr>
<td>7 XXXXX</td>
<td>(least sig. part of Y position) ENTER</td>
<td></td>
</tr>
<tr>
<td>10₈ XXXXX</td>
<td>(most sig. part of Z position) ENTER</td>
<td></td>
</tr>
<tr>
<td>11₈ XXXXX</td>
<td>(least sig. part of Z position) ENTER</td>
<td></td>
</tr>
</tbody>
</table>
Octal Identifier | Data Value | Data Definition
--- | --- | ---
12\textsubscript{8} | XXXXX | (most sig. part of X velocity) ENTER
13\textsubscript{8} | XXXXX | (least sig. part of X velocity) ENTER
14\textsubscript{8} | XXXXX | (most sig. part of Y velocity) ENTER
15\textsubscript{8} | XXXXX | (least sig. part of Y velocity) ENTER
16\textsubscript{8} | XXXXX | (most sig. part of Z velocity) ENTER
17\textsubscript{8} | XXXXX | (least sig. part of Z velocity) ENTER
20\textsubscript{8} | XXXXX | (most sig. part of time from CMC clock zero) ENTER
21\textsubscript{8} | XXXXX | (least sig. part of time from CMC clock zero) ENTER

where each "A", "X" and "ENTER" above represent an uplink word.

2.1.5.2 CMC DESIRED REFSMMAT UPDATE

XSMD - XSMD + 17 is a 3×3 double precision matrix which represents the Reference to Stable Member Desired Transformation. The elements of the matrix are scaled, units/21.

The following relations must hold:
1. The inner product of any row with itself must equal 0.25
2. The inner product of any column with itself must equal 0.25
3. The inner product of any row with another row must equal 0
4. The inner product of any column with another column must equal 0

The CMC DESIRED REFSMMAT UPDATE must be sent in the following sequence:

<table>
<thead>
<tr>
<th>Octal Identifier</th>
<th>Data Value</th>
<th>Data Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24\textsubscript{8}</td>
<td>(index value) ENTER</td>
</tr>
<tr>
<td>2</td>
<td>AAAA</td>
<td>(ECADR - 0306) ENTER</td>
</tr>
<tr>
<td>3</td>
<td>XXXXX</td>
<td>(most sig. part of Row 1 Col. 1) ENTER</td>
</tr>
<tr>
<td>4</td>
<td>XXXXX</td>
<td>(least sig. part of Row 1 Col. 1) ENTER</td>
</tr>
<tr>
<td>5</td>
<td>XXXXX</td>
<td>(most sig. part of Row 1 Col. 2) ENTER</td>
</tr>
<tr>
<td>6</td>
<td>XXXXX</td>
<td>(least sig. part of Row 1 Col. 2) ENTER</td>
</tr>
<tr>
<td>7</td>
<td>XXXXX</td>
<td>(most sig. part of Row 1 Col. 3) ENTER</td>
</tr>
<tr>
<td>10\textsubscript{8}</td>
<td>XXXXX</td>
<td>(least sig. part of Row 1 Col. 3) ENTER</td>
</tr>
<tr>
<td>11\textsubscript{8}</td>
<td>XXXXX</td>
<td>(most sig. part of Row 2 Col. 1) ENTER</td>
</tr>
</tbody>
</table>

2-15
<table>
<thead>
<tr>
<th>Octal Identifier</th>
<th>Data Value</th>
<th>Data Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12<sub>8</sub></td>
<td>XXXXX</td>
<td>(least sig. part of Row 2 Col. 1) ENTER</td>
</tr>
<tr>
<td>13<sub>8</sub></td>
<td>XXXXX</td>
<td>(most sig. part of Row 2 Col. 2) ENTER</td>
</tr>
<tr>
<td>14<sub>8</sub></td>
<td>XXXXX</td>
<td>(least sig. part of Row 2 Col. 2) ENTER</td>
</tr>
<tr>
<td>15<sub>8</sub></td>
<td>XXXXX</td>
<td>(most sig. part of Row 2 Col. 3) ENTER</td>
</tr>
<tr>
<td>16<sub>8</sub></td>
<td>XXXXX</td>
<td>(least sig. part of Row 2 Col. 3) ENTER</td>
</tr>
<tr>
<td>17<sub>8</sub></td>
<td>XXXXX</td>
<td>(most sig. part of Row 3 Col. 1) ENTER</td>
</tr>
<tr>
<td>20<sub>8</sub></td>
<td>XXXXX</td>
<td>(least sig. part of Row 3 Col. 1) ENTER</td>
</tr>
<tr>
<td>21<sub>8</sub></td>
<td>XXXXX</td>
<td>(most sig. part of Row 3 Col. 2) ENTER</td>
</tr>
<tr>
<td>22<sub>8</sub></td>
<td>XXXXX</td>
<td>(least sig. part of Row 3 Col. 2) ENTER</td>
</tr>
<tr>
<td>23<sub>8</sub></td>
<td>XXXXX</td>
<td>(most sig. part of Row 3 Col. 3) ENTER</td>
</tr>
<tr>
<td>24<sub>8</sub></td>
<td>XXXXX</td>
<td>(least sig. part of Row 3 Col. 3) ENTER</td>
</tr>
</tbody>
</table>

2.1.5.3 CMC REFSMMAT UPDATE

REFSMMAT = REFSMMAT + 17D is a 3 x 3 matrix used to convert between reference coordinates and stable member coordinates. The elements of the matrix are scaled, units/2¹.

The CMC REFSMMAT UPDATE must be sent in the following sequence:

<table>
<thead>
<tr>
<th>Octal Identifier</th>
<th>Data Value</th>
<th>Data Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24<sub>8</sub></td>
<td>(index value) ENTER</td>
</tr>
<tr>
<td>2</td>
<td>AAAA</td>
<td>(ECADR - 1735) ENTER</td>
</tr>
<tr>
<td>3</td>
<td>XXXXX</td>
<td>(most sig. part of Row 1 Col. 1) ENTER</td>
</tr>
<tr>
<td>4</td>
<td>XXXXX</td>
<td>(least sig. part of Row 1 Col. 1) ENTER</td>
</tr>
<tr>
<td>5</td>
<td>XXXXX</td>
<td>(most sig. part of Row 1 Col. 2) ENTER</td>
</tr>
<tr>
<td>6</td>
<td>XXXXX</td>
<td>(least sig. part of Row 1 Col. 2) ENTER</td>
</tr>
<tr>
<td>7</td>
<td>XXXXX</td>
<td>(most sig. part of Row 1 Col. 3) ENTER</td>
</tr>
<tr>
<td>10<sub>8</sub></td>
<td>XXXXX</td>
<td>(least sig. part of Row 1 Col. 3) ENTER</td>
</tr>
<tr>
<td>11<sub>8</sub></td>
<td>XXXXX</td>
<td>(most sig. part of Row 2 Col. 1) ENTER</td>
</tr>
<tr>
<td>12<sub>8</sub></td>
<td>XXXXX</td>
<td>(least sig. part of Row 2 Col. 1) ENTER</td>
</tr>
<tr>
<td>Octal Identifier</td>
<td>Data Value</td>
<td>Data Description</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>13_8</td>
<td>XXXXX</td>
<td>(most sig. part of Row 2 Col. 2) ENTER</td>
</tr>
<tr>
<td>14_8</td>
<td>XXXXX</td>
<td>(least sig. part of Row 2 Col. 2) ENTER</td>
</tr>
<tr>
<td>15_8</td>
<td>XXXXX</td>
<td>(most sig. part of Row 2 Col. 3) ENTER</td>
</tr>
<tr>
<td>16_8</td>
<td>XXXXX</td>
<td>(least sig. part of Row 2 Col. 3) ENTER</td>
</tr>
<tr>
<td>17_8</td>
<td>XXXXX</td>
<td>(most sig. part of Row 3 Col. 1) ENTER</td>
</tr>
<tr>
<td>20_8</td>
<td>XXXXX</td>
<td>(least sig. part of Row 3 Col. 1) ENTER</td>
</tr>
<tr>
<td>21_8</td>
<td>XXXXX</td>
<td>(most sig. part of Row 3 Col. 2) ENTER</td>
</tr>
<tr>
<td>22_8</td>
<td>XXXXX</td>
<td>(least sig. part of Row 3 Col. 2) ENTER</td>
</tr>
<tr>
<td>23_8</td>
<td>XXXXX</td>
<td>(most sig. part of Row 3 Col. 3) ENTER</td>
</tr>
<tr>
<td>24_8</td>
<td>XXXXX</td>
<td>(least sig. part of Row 3 Col. 3) ENTER</td>
</tr>
</tbody>
</table>

2,1,5,4 CMC EXTERNAL DELTA V UPDATE

This data consists of three velocity components in local vertical coordinates, and the time of ignition. The scale factors are

1. \(\text{DELVSLV}_{x,y,z} \) (meters/centisecond)/2^7
 \(\text{DELVSLV}_{x,y,z} \) must be in a local vertical system at an origin which corresponds to the CM state (earth-centered or moon-centered) at TIG.

2. TIG \(\text{centiseconds}/2^{28} \)

The velocity components, sent from the ground must be in the local vertical system defined by the CMC-determined, CSM state vector at TIG-30. In addition, in order for an update to be accepted properly when near the sphere, the CMC must not change the sphere reference between TIG-30 and TIG. (A safe procedure is to not designate TIG within ±3 hours of the sphere crossing.)

The CMC EXTERNAL DELTA V UPDATE data must be sent in the following sequence:

<table>
<thead>
<tr>
<th>Octal Identifier</th>
<th>Data Value</th>
<th>Data Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12_8</td>
<td>(index value) ENTER</td>
</tr>
<tr>
<td>2</td>
<td>AAAA</td>
<td>(ECADR - 3404) ENTER</td>
</tr>
<tr>
<td>3</td>
<td>XXXXX</td>
<td>(most sig. part of (\text{DELVSLV}_{x})) ENTER</td>
</tr>
<tr>
<td>4</td>
<td>XXXXX</td>
<td>(least sig. part of (\text{DELVSLV}_{x})) ENTER</td>
</tr>
<tr>
<td>5</td>
<td>XXXXX</td>
<td>(most sig. part of (\text{DELVSLV}_{y})) ENTER</td>
</tr>
<tr>
<td>6</td>
<td>XXXXX</td>
<td>(least sig. part of (\text{DELVSLV}_{y})) ENTER</td>
</tr>
<tr>
<td>7</td>
<td>XXXXX</td>
<td>(most sig. part of (\text{DELVSLV}_{z})) ENTER</td>
</tr>
<tr>
<td>10_8</td>
<td>XXXXX</td>
<td>(least sig. part of (\text{DELVSLV}_{z})) ENTER</td>
</tr>
<tr>
<td>11_8</td>
<td>XXXXX</td>
<td>(most sig. part of TIG) ENTER</td>
</tr>
<tr>
<td>12_8</td>
<td>XXXXX</td>
<td>(least sig. part of TIG) ENTER</td>
</tr>
</tbody>
</table>
2.1.5.5 CMC RETROFIRE EXTERNAL DELTA V UPDATE

This data consists of the latitude and longitude of the entry target, three velocity components in local vertical coordinates and the time of ignition. The scale factors are:

1. GEODETiC LAT(SPL) degrees/360 (North positive)
2. LNG (SPL) degrees/360 (East positive)
3. DELVSLV\textsubscript{x,y,z} \text{ (meters/centisecond)}/2^7
4. TIG centiseconds/2^28

The CMC RETROFIRE EXTERNAL DELTA V UPDATE data must be sent in the following sequence:

<table>
<thead>
<tr>
<th>Octal Identifier</th>
<th>Data Value</th>
<th>Data Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1\textsubscript{8}</td>
<td>\text{16} \textsubscript{8}</td>
<td>(Index value) ENTER</td>
</tr>
<tr>
<td>2\textsubscript{8}</td>
<td>AAAA \textsubscript{8}</td>
<td>(ECADR= 3400) ENTER</td>
</tr>
<tr>
<td>3\textsubscript{8}</td>
<td>XXXXXX \textsubscript{8}</td>
<td>(most sig. part of LAT (SPL)) ENTER</td>
</tr>
<tr>
<td>4\textsubscript{8}</td>
<td>XXXXXX \textsubscript{8}</td>
<td>(least sig. part of LAT (SPL)) ENTER</td>
</tr>
<tr>
<td>5\textsubscript{8}</td>
<td>XXXXX \textsubscript{8}</td>
<td>(most sig. part of LNG (SPL)) ENTER</td>
</tr>
<tr>
<td>6\textsubscript{8}</td>
<td>XXXXX \textsubscript{8}</td>
<td>(least sig. part of LNG (SPL)) ENTER</td>
</tr>
<tr>
<td>7\textsubscript{8}</td>
<td>XXXXX \textsubscript{8}</td>
<td>(most sig. part of DELVSLV\textsubscript{x}) ENTER</td>
</tr>
<tr>
<td>10\textsubscript{8}</td>
<td>XXXXX \textsubscript{8}</td>
<td>(least sig. part of DELVSLV\textsubscript{x}) ENTER</td>
</tr>
<tr>
<td>11\textsubscript{8}</td>
<td>XXXXX \textsubscript{8}</td>
<td>(most sig. part of DELVSLV\textsubscript{y}) ENTER</td>
</tr>
<tr>
<td>12\textsubscript{8}</td>
<td>XXXXX \textsubscript{8}</td>
<td>(least sig. part of DELVSLV\textsubscript{y}) ENTER</td>
</tr>
<tr>
<td>13\textsubscript{8}</td>
<td>XXXXX \textsubscript{8}</td>
<td>(most sig. part of DELVSLV\textsubscript{z}) ENTER</td>
</tr>
<tr>
<td>14\textsubscript{8}</td>
<td>XXXXX \textsubscript{8}</td>
<td>(least sig. part of DELVSLV\textsubscript{z}) ENTER</td>
</tr>
<tr>
<td>15\textsubscript{8}</td>
<td>XXXXX \textsubscript{8}</td>
<td>(most sig. part of TIG) ENTER</td>
</tr>
<tr>
<td>16\textsubscript{8}</td>
<td>XXXXX \textsubscript{8}</td>
<td>(least sig. part of TIG) ENTER</td>
</tr>
</tbody>
</table>

2.1.5.6 CMC ENTRY UPDATE

This data consists of the latitude and longitude of the entry target. The scale factors are:

1. GEODETiC LAT(SPL) degrees/360 (North positive)
2. LNG (SPL) degrees/360 (East positive)

The CMC ENTRY UPDATE data must be sent in the following sequence:
2.1.5.7 CMC LAMBERT TARGET UPDATE

This data consists of: the time of ignition (TIG); the aim point (RTARG) in reference coordinates, which may be earth-centered or moon-centered; the delta time of flight to aim point (DELLT4), and the steering constant (ECSTEER). The target vector sent from the ground must be in the same sphere of influence as the CMC-determined, CSM state vector at TIG-30. In addition, in order for an update to be accepted properly when near the sphere, the CMC must not change the sphere reference between TIG-30 and TIG. (A safe procedure is to not designate TIG within ±2 hours of the sphere crossing.) The scale factors are:

1. **TIG** \(\text{centiseconds} / 2^{28} \)
2. **RTARG}_x, y, z \(\text{meters} / 2^{29} \)
3. **DELLT4** \(\text{centiseconds} / 2^{28} \)
4. **ECSTEER** a 14-bit fraction / 4

The CMC LAMBERT TARGET UPDATE Data must be sent in the following sequence:

<table>
<thead>
<tr>
<th>Octal Identifier</th>
<th>Data Value</th>
<th>Data Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>06_8</td>
<td>(index value) ENTER</td>
</tr>
<tr>
<td>2</td>
<td>AAAA</td>
<td>(ECADR-3400) ENTER</td>
</tr>
<tr>
<td>3</td>
<td>XXXXX</td>
<td>(most sig. part of LAT (SPL)) ENTER</td>
</tr>
<tr>
<td>4</td>
<td>XXXXX</td>
<td>(least sig. part of LAT (SPL)) ENTER</td>
</tr>
<tr>
<td>5</td>
<td>XXXXX</td>
<td>(most sig. part of LNG (SPL)) ENTER</td>
</tr>
<tr>
<td>6</td>
<td>XXXXX</td>
<td>(least sig. part of LNG (SPL)) ENTER</td>
</tr>
</tbody>
</table>

2-19
2.1.5.8 CMC Landing Site Vector Update

This data consists of three double-precision position components X, Y, Z, defining the lunar landing site in moon-fixed coordinates, scaled meters/2^{27}.

The CMC LANDING SITE VECTOR UPDATE data must be sent in the following sequence:

<table>
<thead>
<tr>
<th>Octal Identifier</th>
<th>Data Value</th>
<th>Data Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>108</td>
<td>(index value) ENTER</td>
</tr>
<tr>
<td>2</td>
<td>AAAA</td>
<td>(ECADR-2025) ENTER</td>
</tr>
<tr>
<td>3</td>
<td>XXXXX</td>
<td>(most sig. part of RLS X-component) ENTER</td>
</tr>
<tr>
<td>4</td>
<td>XXXXX</td>
<td>(least sig. part of RLS X-component) ENTER</td>
</tr>
<tr>
<td>5</td>
<td>XXXXX</td>
<td>(most sig. part of RLS Y-component) ENTER</td>
</tr>
<tr>
<td>6</td>
<td>XXXXX</td>
<td>(least sig. part of RLS Y-component) ENTER</td>
</tr>
<tr>
<td>7</td>
<td>XXXXX</td>
<td>(most sig. part of RLS Z-component) ENTER</td>
</tr>
<tr>
<td>10_8</td>
<td>XXXXX</td>
<td>(least sig. part of RLS Z-component) ENTER</td>
</tr>
</tbody>
</table>
2.2 CMC Digital Downlink

The downlink format is controlled by a CMC program. This program is entered on an interrupt caused by an "endpulse" from the telemetry system. The program loads the content of the next two 16-bit CMC registers that are to be transmitted into channels 34 and 35. The loading is accomplished according to the format described in the next paragraph.

Each downlist word consists of 33 significant bits plus seven repetition bits. The first bit is a "word order code bit". The next 16 bits comprise the contents of one 16-bit CMC register (15 bits of data followed by an odd parity bit). The final 16 bits are the content of another 16-bit CMC register. Since the spacecraft downlink is organized in 8-bit segments, seven "filler bits" are transmitted to follow the 33 bits outlined above in order to use all the downlink space available. These filler bits are repetitions of the first seven bits of the first CMC register transmitted.

Thus the form in which the content of the two CMC registers is arranged for transmission as a sequence of 40 CMC downlink bits (represented by X) on channels 34 and 35 may be pictured as shown in the table below:

<table>
<thead>
<tr>
<th>Reg Word Order Code</th>
<th>Channel 34</th>
<th>Channel 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>15, 1 14, 1 13, 1 12, 1 11, 1 10, 1 9, 1 8, 1 7, 1 6, 1 5, 1 4, 1 3, 1 2, 1 1, 1 P, 1</td>
<td>X X X X X X X X X X X X X X X X</td>
<td>word</td>
</tr>
<tr>
<td>15, 2 14, 2 13, 2 12, 2 11, 2 10, 2 9, 2 8, 2 7, 2 6, 2 5, 2 4, 2 3, 2 2, 1 2, 2 P, 2</td>
<td>X X X X X X X X X X X X X X X X</td>
<td>repeat</td>
</tr>
<tr>
<td>15, 1 14, 1 13, 1 12, 1 11, 1 10, 1 9, 1</td>
<td>X X X X X X</td>
<td></td>
</tr>
</tbody>
</table>

Table Showing CMC Downlink Bits

The first word in any list contains the "ID" and synchronization registers and has a word order code bit of zero. (All other downlink words have word order code bits of one except word 51 on the standard downlists which has a word order code bit of zero to indicate the mid-point of the standard downlists.) The ID register marks the beginning of a list and identifies the list being transmitted. The synchronization (sync) register always contains the same sixteen bits (111 111 011 100 000 0), which are used to synchronize remote site downlink processing equipment. The content of the standard lists and the programs in which they are transmitted are described in section 2.2.2.

The standard CMC downlink lists contain 100 downlink words (200 CMC registers). The CMC digital downlink is transmitted at a rate of 50 words per second at
high bit rate and 10 words at low bit rate. Therefore, transmission of the standard list requires two seconds at high bit rate and ten seconds at the low bit rate.

2.2.1 Erasable Memory Dump Downlist

Upon reception of a Verb 74 Enter from the keyboard or the uplink, the computer will interrupt the nominal downlist being transmitted and start transmitting the erasable memory dump downlist. The first word of the erasable memory dump downlist is an ID word, 01777, and the same pattern of synch bits as on the standard list. The word order code for this downlink word will be zero. The next 129 downlink words have word order codes of one and make up the remainder of the 130 word dump downlink list. Word 2 of this list (i.e., the word following the ID word) contains a "packed indicator" code in the first register and the contents of TIME1 in the second register. TIME1 is the least significant clock register and is described later in this section under the standard lists. The "packed indicator" identifies which erasable bank and which pass through that bank is contained in the present list as follows:

Bits 15 & 14 - zero
Bits 13 & 12 - 00 for 1st pass
 01 for 2nd pass
 10 for 3rd pass
 11 for 4th pass
Bits 11 thru 9 - gives EBANK number
Bits 8 thru 1 - zeros

The next 128 downlink words (256 registers) are the contents of the erasable bank indicated in the packed indicator.

After transmitting the 130 downlink word list (one ID word, one packed indicator and time word, and 128 data words), the downlink will transmit the ID word again, followed by the packed indicator, followed by the contents of the next erasable bank etc. In this way, one complete pass through erasable memory will require 20.8 seconds. The computer will make 1, 2, or 4 complete passes through the complete erasable memory before returning to the standard downlist. The number of passes made is determined by the contents of an erasable register DUMPCNT as follows:

\[\begin{align*}
20000_8 &= 4 \text{ passes} \\
10000_8 &= 2 \text{ passes} \\
04000_8 &= 1 \text{ pass}
\end{align*} \]

This erasable register will be loaded during prelaunch in the erasable load with an initial value and may be changed via P27 by the uplink (see sec 2.1) from the ground DSKY or from the spacecraft DSKY.
NOTE: After completion of the erasable dump downlist the interrupted list will be started at the ID word. Since no programs are interrupted during the transmission of the erasable memory downlist, some of the registers transmitted may have different contents on different passes through the erasable.

2.2.2 Standard Downlists

For this mission there are five standard downlists, each associated with a set of programs, as follows:

A. The Powered List is transmitted during

40 SPS Thrust
41 RCS Thrust
47 Thrust Monitor
61 Entry Preparation Program

B. The Coast and Align List is transmitted during

00 CMC Idling
01 Prelaunch Initialization
02 Gyro Compassing
03 Optical Verification of azimuth
06 CMC Power Down
07 System Test
11 Earth Orbit Injection (EOI) Monitor
51 IMU Orientation Determination
52 IMU Realignment Program
53 Backup IMU Orientation Determination
54 Backup IMU Realignment

C. The Rendezvous and Prethrust List is transmitted during

17 CSM TPI Search
20 Rendezvous Navigation
21 Ground Track Determination
23 Cislunar Navigation
30 External ΔV Maneuver Guidance
31 Lambert Aim Point Maneuver Guidance
34 Transfer Phase Initiation (TPI) Guidance
35 Transfer Phase Midcourse (TPM) Guidance
37 Return to Earth Maneuver Guidance
38 Stable Orbit Rendezvous Guidance
39 Stable Orbit Rendezvous Midcourse Guidance
74 LM Transfer Phase Initiation (TPI) Targeting
75 LM Transfer Phase Midcourse (TPM) Targeting
77 LM TPI Search Program
78 LM Stable Orbit Rendezvous
79 LM Stable Orbit Rendezvous Midcourse Targeting
D. The Entry and Update List is transmitted during
 27 CMC Update
 62 CM/SM Separation and Pre-entry Maneuver
 63 Entry Initialization
 64 Post 0.05 G Entry Mode
 65 Up Control Entry Mode
 66 Ballistic Entry Mode
 67 Final Entry Mode

E. The P-22 List is transmitted during
 22 Orbital Navigation

The list switching is accomplished as follows: The DOWNLINK program, at the begin-
ing of a pass, uses the ID word to trigger selection of the appropriate list for that
pass. Whenever a new program is entered, it sets up a request for its list by placing
the appropriate value in the register, DNLSTCOD, which the DOWNLINK will pick up as
the ID. When, at the beginning of the next pass, the DOWNLINK reads this register,
the appropriate list is then initiated (i.e., the list is not switched in the middle of a
pass). This procedure is of course not true for the erasable memory dump down-
list (see section 2.2.1), which completes its required number of passes irrespective
of other programs. A computer "restart", or "fresh start" will immediately cause
the telemetry list to start with word #1. A "restart" will retain the list in progress
but a "fresh start" will set the list to Coast and Align. An erasable memory dump,
if in progress, will be interrupted in both cases.

Since certain data on the standard downlink lists are only meaningful when
considered in multiregister arrays and since the programs which compute these arrays
are not synchronized with the downlink program, a "snapshot" is taken of these words
so that changes in their values will not occur while these arrays are being transmitted
to the ground. When a "snapshot" is taken several words are stored at the time the
first word is transmitted. The other words in the downlist are read at the time of
transmission and therefore the only time homogeneity for them is between the two
registers making up a single word. The COLOSSUS downlists have the following
"snapshots":

Powered List words 2-8, 9-13, 52-58, 59-63
Coast and Align List words 2-8, 9-13, 52-58, 59-63
Rendezvous and Prethrust List words 2-8, 9-13, 52-58, 59-63
Entry and Update List words 2-8, 9-13, 52-58, 59-63
P-22 List words 2-8, 9-13, 52-54, 59-63

The following is a list of CMC registers making up the various downlists.

A register may contain other quantities during programs in which the CMC no
longer needs to save the primary downlist quantity.
<table>
<thead>
<tr>
<th>Word Number</th>
<th>First Register</th>
<th>Second Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I.D. 77774B</td>
<td>Synch Bits 77340B</td>
</tr>
<tr>
<td>2</td>
<td>CSM State Vector (R_x)</td>
<td>CSM State Vector (R_x)</td>
</tr>
<tr>
<td>3</td>
<td>CSM State Vector (R_y)</td>
<td>CSM State Vector (R_y)</td>
</tr>
<tr>
<td>4</td>
<td>CSM State Vector (R_z)</td>
<td>CSM State Vector (R_z)</td>
</tr>
<tr>
<td>5</td>
<td>CSM State Vector (V_x)</td>
<td>CSM State Vector (V_x)</td>
</tr>
<tr>
<td>6</td>
<td>CSM State Vector (V_y)</td>
<td>CSM State Vector (V_y)</td>
</tr>
<tr>
<td>7</td>
<td>CSM State Vector (V_z)</td>
<td>CSM State Vector (V_z)</td>
</tr>
<tr>
<td>8</td>
<td>CSM State Vector Time</td>
<td>CSM State Vector Time</td>
</tr>
<tr>
<td>9</td>
<td>Actual X CDU angle</td>
<td>Actual Y CDU angle</td>
</tr>
<tr>
<td>10</td>
<td>Actual Z CDU angle</td>
<td>Optics CDU Trunnion Angle</td>
</tr>
<tr>
<td>11</td>
<td>ADOTS roll or OGARATE</td>
<td>ADOTS roll or OGARATE</td>
</tr>
<tr>
<td>12</td>
<td>ADOTS pitch or OMEGA B pitch</td>
<td>ADOTS pitch or OMEGA B pitch</td>
</tr>
<tr>
<td>13</td>
<td>ADOTS yaw or OMEGA B yaw</td>
<td>ADOTS yaw or OMEGA B yaw</td>
</tr>
<tr>
<td>14</td>
<td>X attitude error</td>
<td>Y attitude error</td>
</tr>
<tr>
<td>15</td>
<td>Z attitude error</td>
<td>RCS flags</td>
</tr>
<tr>
<td>16</td>
<td>THETADX</td>
<td>THETADY</td>
</tr>
<tr>
<td>17</td>
<td>THETADZ</td>
<td>Garbage</td>
</tr>
<tr>
<td>18</td>
<td>TIG</td>
<td>TIG</td>
</tr>
<tr>
<td>19</td>
<td>T_F Lambert</td>
<td>T_F Lambert</td>
</tr>
<tr>
<td>20</td>
<td>RTARGX</td>
<td>RTARGX</td>
</tr>
<tr>
<td>21</td>
<td>RTARGY</td>
<td>RTARGY</td>
</tr>
<tr>
<td>22</td>
<td>RTARGZ</td>
<td>RTARGZ</td>
</tr>
<tr>
<td>23</td>
<td>TGO</td>
<td>TGO</td>
</tr>
<tr>
<td>24</td>
<td>PIPTIME1</td>
<td>PIPTIME1</td>
</tr>
<tr>
<td>25</td>
<td>DELVX</td>
<td>DELVX</td>
</tr>
<tr>
<td>26</td>
<td>DELVY</td>
<td>DELVY</td>
</tr>
<tr>
<td>27</td>
<td>DELVZ</td>
<td>DELVZ</td>
</tr>
<tr>
<td>28</td>
<td>PACTOFF</td>
<td>YACTOFF</td>
</tr>
<tr>
<td>29</td>
<td>PCMD</td>
<td>YCMD</td>
</tr>
<tr>
<td>30</td>
<td>CSTEER</td>
<td>Garbage</td>
</tr>
<tr>
<td>31</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>32</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>33</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>34</td>
<td>REFSMMAT (R₁C₁)</td>
<td>REFSMMAT (R₁C₁)</td>
</tr>
<tr>
<td>35</td>
<td>REFSMMAT (R₁C₂)</td>
<td>REFSMMAT (R₁C₂)</td>
</tr>
<tr>
<td>36</td>
<td>REFSMMAT (R₁C₃)</td>
<td>REFSMMAT (R₁C₃)</td>
</tr>
<tr>
<td>Word Number</td>
<td>First Register</td>
<td>Second Register</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>37</td>
<td>REFSMMAT (R_2C_1)</td>
<td>REFSMMAT (R_2C_1)</td>
</tr>
<tr>
<td>38</td>
<td>REFSMMAT (R_2C_2)</td>
<td>REFSMMAT (R_2C_2)</td>
</tr>
<tr>
<td>39</td>
<td>REFSMMAT (R_2C_3)</td>
<td>REFSMMAT (R_2C_3)</td>
</tr>
<tr>
<td>40</td>
<td>Flagword 0</td>
<td>Flagword 1</td>
</tr>
<tr>
<td>41</td>
<td>Flagword 2</td>
<td>Flagword 3</td>
</tr>
<tr>
<td>42</td>
<td>Flagword 4</td>
<td>Flagword 5</td>
</tr>
<tr>
<td>43</td>
<td>Flagword 6</td>
<td>Flagword 7</td>
</tr>
<tr>
<td>44</td>
<td>Flagword 8</td>
<td>Flagword 9</td>
</tr>
<tr>
<td>45</td>
<td>DSPTAB+0</td>
<td>DSPTAB+1</td>
</tr>
<tr>
<td>46</td>
<td>DSPTAB+2</td>
<td>DSPTAB+3</td>
</tr>
<tr>
<td>47</td>
<td>DSPTAB+4</td>
<td>DSPTAB+5</td>
</tr>
<tr>
<td>48</td>
<td>DSPTAB+6</td>
<td>DSPTAB+7</td>
</tr>
<tr>
<td>49</td>
<td>DSPTAB+8D</td>
<td>DSPTAB+9D</td>
</tr>
<tr>
<td>50</td>
<td>DSPTAB+10D</td>
<td>DSPTAB+11D</td>
</tr>
<tr>
<td>51</td>
<td>TIME 2</td>
<td>TIME 1</td>
</tr>
<tr>
<td>52</td>
<td>LM State Vector (R_X)</td>
<td>LM State Vector (R_X)</td>
</tr>
<tr>
<td>53</td>
<td>LM State Vector (R_Y)</td>
<td>LM State Vector (R_Y)</td>
</tr>
<tr>
<td>54</td>
<td>LM State Vector (R_Z)</td>
<td>LM State Vector (R_Z)</td>
</tr>
<tr>
<td>55</td>
<td>LM State Vector (V_X)</td>
<td>LM State Vector (V_X)</td>
</tr>
<tr>
<td>56</td>
<td>LM State Vector (V_Y)</td>
<td>LM State Vector (V_Y)</td>
</tr>
<tr>
<td>57</td>
<td>LM State Vector (V_Z)</td>
<td>LM State Vector (V_Z)</td>
</tr>
<tr>
<td>58</td>
<td>LM State Vector Time</td>
<td>LM State Vector Time</td>
</tr>
<tr>
<td>59</td>
<td>Actual X CDU angle</td>
<td>Actual Y CDU angle</td>
</tr>
<tr>
<td>60</td>
<td>Actual Z CDU angle</td>
<td>Optics CDU trunnion angle</td>
</tr>
<tr>
<td>61</td>
<td>ADOTS roll or OGARATE</td>
<td>ADOTS roll or OGARATE</td>
</tr>
<tr>
<td>62</td>
<td>ADOTS pitch or Omega B pitch</td>
<td>ADOTS pitch or Omega B pitch</td>
</tr>
<tr>
<td>63</td>
<td>ADOTS yaw or Omega B yaw</td>
<td>ADOTS yaw or Omega B yaw</td>
</tr>
<tr>
<td>64</td>
<td>X attitude error</td>
<td>Y attitude error</td>
</tr>
<tr>
<td>65</td>
<td>Z attitude error</td>
<td>RCS flags</td>
</tr>
<tr>
<td>66</td>
<td>THETADX</td>
<td>THETADY</td>
</tr>
<tr>
<td>67</td>
<td>THETADZ</td>
<td>Garbage</td>
</tr>
<tr>
<td>68</td>
<td>* RSBBQ</td>
<td>RSBBQ+1</td>
</tr>
<tr>
<td>69</td>
<td>* CADRFLSH</td>
<td>CADRFLSH+1</td>
</tr>
<tr>
<td>70</td>
<td>* CADRFLSH+2</td>
<td>FAILREG</td>
</tr>
<tr>
<td>71</td>
<td>* FAILREG+1</td>
<td>FAILREG+2</td>
</tr>
<tr>
<td>72</td>
<td>Optics Shaft</td>
<td>PIPAX</td>
</tr>
<tr>
<td>73</td>
<td>PIPAY</td>
<td>PIPAZ</td>
</tr>
</tbody>
</table>

* Indicates two single precision quantities that are not indicated otherwise.
<table>
<thead>
<tr>
<th>Word Number</th>
<th>First Register</th>
<th>Second Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>Elevation Angle</td>
<td>Elevation Angle</td>
</tr>
<tr>
<td>75</td>
<td>Central Angle</td>
<td>Central Angle</td>
</tr>
<tr>
<td>76</td>
<td>Offset Point</td>
<td>Offset Point</td>
</tr>
<tr>
<td>77</td>
<td>Flagword 10</td>
<td>Flagword 11</td>
</tr>
<tr>
<td>78</td>
<td>TEVENT</td>
<td>TEVENT</td>
</tr>
<tr>
<td>79</td>
<td>PCMD</td>
<td>YCMD</td>
</tr>
<tr>
<td>80</td>
<td>OPTMODES</td>
<td>HOLDFLAG</td>
</tr>
<tr>
<td>81</td>
<td>LM MASS</td>
<td>CM MASS</td>
</tr>
<tr>
<td>82</td>
<td>DAPDATR1</td>
<td>DAPDATR2</td>
</tr>
<tr>
<td>83</td>
<td>ERROR X</td>
<td>ERROR Y</td>
</tr>
<tr>
<td>84</td>
<td>ERROR Z</td>
<td>Garbage (THETADX)</td>
</tr>
<tr>
<td>85</td>
<td>WBODY (roll) or OMEGAC (roll)</td>
<td>WBODY (roll) or OMEGAC (roll)</td>
</tr>
<tr>
<td>86</td>
<td>WBODY (pitch) or OMEGAC (pitch)</td>
<td>WBODY (pitch) or OMEGAC (pitch)</td>
</tr>
<tr>
<td>87</td>
<td>WBODY (yaw) or OMEGAC (yaw)</td>
<td>WBODY (yaw) or OMEGAC (yaw)</td>
</tr>
<tr>
<td>88</td>
<td>REDO COUNTER</td>
<td>Desired FINAL CDUX</td>
</tr>
<tr>
<td>89</td>
<td>Desired FINAL CDUY</td>
<td>Desired FINAL CDUZ</td>
</tr>
<tr>
<td>90</td>
<td>IMODES 30</td>
<td>IMODES 33</td>
</tr>
<tr>
<td>91</td>
<td>Channel 11</td>
<td>Channel 12</td>
</tr>
<tr>
<td>92</td>
<td>Channel 13</td>
<td>Channel 14</td>
</tr>
<tr>
<td>93</td>
<td>Channel 30</td>
<td>Channel 31</td>
</tr>
<tr>
<td>94</td>
<td>Channel 32</td>
<td>Channel 33</td>
</tr>
<tr>
<td>95</td>
<td>VGTIGX</td>
<td>VGTIGX</td>
</tr>
<tr>
<td>96</td>
<td>VGTIGY</td>
<td>VGTIGY</td>
</tr>
<tr>
<td>97</td>
<td>VGTIGZ</td>
<td>VGTIGZ</td>
</tr>
<tr>
<td>98</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>99</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>100</td>
<td>Spare</td>
<td>Spare</td>
</tr>
</tbody>
</table>
2.2.2.2 Powered List

<table>
<thead>
<tr>
<th>Word Number</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>ID word for this list. It will contain 77774<sub>8</sub>.</td>
</tr>
<tr>
<td>1b</td>
<td>Synch bits. It will contain 77340<sub>8</sub>.</td>
</tr>
<tr>
<td>2-8</td>
<td>CSM STATE VECTOR and TIME. The CMC's latest calculated state vector for the CSM in either earth-centered or moon-centered reference coordinates. During the Orbital Integration Routine, the sphere of influence will be indicated by Flagword 8, bit 12 (CMOONFLG): zero = earth-centered; one = lunar-centered. It is important to note that the Average-G routine is initialized with a state in RN, VN which can have a different origin than is indicated by CMOONFLG. This means an inconsistency in the Downlink of the state vector actual origin and CMOONFLG origin. Words 2-4 contain the position components, X, Y, Z, scaled meters/2<sup>29</sup>. Words 5-7 contain the velocity components, X, Y, Z, scaled (meters/centisecond)/2<sup>7</sup>. Word 8 contains the time associated with the CSM state vector in words 2-7, scaled centiseconds/2<sup>28</sup>, referenced to the computer clock. These parameters are calculated whenever the CSM state vector is permanently extrapolated or changed, as follows:</td>
</tr>
<tr>
<td></td>
<td>P00 - every four time steps</td>
</tr>
<tr>
<td></td>
<td>P20, P22, P23 - every mark and every Incorp if CM connected</td>
</tr>
<tr>
<td></td>
<td>P27 - update of state vector</td>
</tr>
<tr>
<td></td>
<td>Average G - every cycle</td>
</tr>
<tr>
<td></td>
<td>V47</td>
</tr>
<tr>
<td>9 & 10a</td>
<td>CDUX (outer gimbal) CDUY (inner gimbal) CDUZ (middle gimbal): The actual values of the IMU CDU angles. Each register is an unsigned 15-bit fraction, scaled degrees/360, and is updated by counter interrupts. A middle gimbal angle greater than 70 degrees will light the Gimbal Lock lamp on the DSKY. Whenever the magnitude of the MGA exceeds 85 degrees the ISS stabilization loop will be disabled. As a result, the CDUZ register should maintain values that correspond to middle gimbal angles between -70 degrees and +70 degrees.</td>
</tr>
<tr>
<td>10b</td>
<td>CDUT. The optics trunnion angle CDU, scaled (degrees - 19.7754)/45 (two's complement). The angle varies from -19.775<sup>o</sup> to +45<sup>o</sup>.</td>
</tr>
<tr>
<td>11-13</td>
<td>ADOTs (if RCS DAP on) or OGRATE and OMEGABs (if TVC DAP on). ADOTs are the RCS DAP - measured vehicle body rates (i.e. the outputs from the RCS DAP rate filter), roll, pitch and yaw, about the control axes. These axes are aligned with the RCS jet quads and, consequently, are rotated, with respect to the NAV base axes, -7.25 degrees about +X. ADOTs are scaled, (degrees/second)/450. OGRATE, in word 11, is the measured roll rate</td>
</tr>
</tbody>
</table>
obtained by back-differencing the outer gimbal angle (OGA) measurements every 0.5 second, scaled \((\text{rev/} \text{sec})/2^{-4}\). This quantity will normally be near zero magnitude but a roll jet failed-on could produce \(2-3^0/\text{sec}\) rates. OMEGABS, in words 12 and 13, are the measured pitch and yaw attitude rates about the body axes, obtained by back-differencing the CDU readings every TVC DAP sample period. The time sharing and scaling for OMEGABs are the same as for the OMEGACs, described in words 85-87 of this downlist. The maximum OMEGAB rate will be less than 5 deg/sec.

NOTE: Even though the TVC zeroing loop treats OGARATE as a single precision quantity, it will be transmitted and considered as a double precision quantity in which the low-order register will always be zero. This is due to the fact that \(\text{OGARATE} = \text{OMEGAXB} \) and after zeroing OMEGAXB and OMEGAYB, as part of the TVC zeroing loop, OGARATE is computed and stored in DP.

AKs. The X, Y and Z (roll, pitch and yaw, respectively) attitude errors used to drive the FDAI display, scaled degrees/180. The roll attitude error register (AK +0) is loaded with one-quarter the "raw" value during P11 (and entry programs while Entry DAP is running, although the cell is not telemetered then) to increase the scale by a factor of four. The attitude errors are about the control axes for RCS DAP and about the body axes for TVC and Entry DAP. Zeros in bits 15, 14 and 13 of DAPDSTR1 and a one in bit 2 of Flagword 5 indicate that the Entry DAP is active.

During RCS DAP operation the particular error quantities depend upon the display mode selected, as follows: MODE 1 (selected by V61) results in Autopilot phase-plane errors; MODE 2 (selected by V62) results in total attitude errors with respect to the angles in N22; MODE 3 (selected by V63) results in total astronaut attitude errors with respect to the angles in N17. In MODE 1 the errors should generally remain less than the attitude deadband, ADB, (either 0.5 degree or 5 degrees as selected in DAPDSTR1). The values are calculated every 200 ms during RCS DAP operation, whereas in TVC DAP operation, AK is updated every 0.5 second in TVC EXECUTIVE with the current value of OGA, and AK 1 and AK 2 are updated every TVC DAP sample period (in PCOPY and YCOPY) with the respective values of ERRBTMP. Also, with TVC DAP, AK will normally have a magnitude of less than 5 degrees but a jet failed-on could produce up to 30 degrees. AK 1 and AK 2 will normally have peak values of up to 10 degrees, converging to 0-4 degrees with time.
<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Bit set 1 to indicate a high rate (4 deg/sec) auto maneuver in progress. Bit is reset to 0 to indicate that a high-rate auto maneuver is not in progress.</td>
</tr>
<tr>
<td>14</td>
<td>Bit set 1 if rate estimates are not good. Repeat initialization of rate filter. Bit is reset to 0 if the rate estimates are good.</td>
</tr>
<tr>
<td>13</td>
<td>Bit set 1 if the rate damping has not been completed on the roll axis. Bit is reset to 0 if the rate damping on the roll axis has been completed.</td>
</tr>
<tr>
<td>12</td>
<td>Bit set 1 if the rate damping has not been completed on the pitch axis. Bit is reset to 0 if the rate damping has been completed on the pitch axis.</td>
</tr>
<tr>
<td>11</td>
<td>Bit set 1 if the rate damping has not been completed on the yaw axis. Bit reset to 0 if the rate damping has been completed on the yaw axis.</td>
</tr>
<tr>
<td>10, 9</td>
<td>If either or both bits have been set to 1, there has been a change in RHC roll command since the last DAP cycle. If both bits are reset to 0, it implies that no change in the RHC roll command has occurred since the last DAP cycle.</td>
</tr>
<tr>
<td>8, 7</td>
<td>If either or both bits have been set to 1, there has been a change in RHC yaw command since the last DAP cycle. If both bits are reset to 0, it implies that no change in the RHC yaw command has occurred since the last DAP cycle.</td>
</tr>
<tr>
<td>6, 5</td>
<td>If either or both bits have been set to 1, there has been a change in the RHC pitch command since the last DAP cycle. If both bits are reset to 0, it implies that no change in the RHC pitch command has occurred since the last DAP cycle.</td>
</tr>
<tr>
<td>4</td>
<td>Bit set 1 indicates that the AK values should be updated. Bit is reset to 0 to indicate that the NEEDLE DRIVE routine should be processed with the AK values which have been previously acquired.</td>
</tr>
</tbody>
</table>
Word Number

15b (cont) Bit Meaning

If Bit 3, Bit 2 = 11 or 10, it is necessary to follow the initialization path of the NEEDLE DRIVE routine.

If Bit 3, Bit 2 = 01, it is necessary to follow pass 2 of the NEEDLE DRIVE routine.

If Bit 3, Bit 2 = 00, it is necessary to follow pass 3 and greater paths of the NEEDLE DRIVE routine.

1 Bit is set 1 to indicate that the initial pass path in the T6 program should not be followed. Bit is reset to 0 if the T6 program should be initialized.

16-17a THETADX, THETADY, THETADZ. During normal RCS DAP operation, when the CMC Mode switch is in AUTO or HOLD and there are no RHC commands, these registers contain the desired current, (i.e., of this DAP cycle opposed to final) roll, pitch, and yaw CDU angles, treated as 15-bit unsigned fractions and scaled degrees/360. These quantities are used in the computation of phase plane attitude errors and are calculated as follows:

1. During automatic maneuvers they are updated every 100 milliseconds.

2. During attitude hold they are constants (the desired CDU angles to be held).

3. At the end of manual rate maneuvers, after rate damping is complete, THETADX, Y & Z are set to the current CDU angles.

4. During manual rate maneuvers and when in FREE mode the registers are not updated.

17b Garbage. This register is used in TVC Zeroing (P40) by the item, C5, which is the yaw TVC CSM/LM filter (5th node). It also may contain DELCDUX, the high-order part of the double-precision quantity which is the incremental value used in the THETADX computation during automatic maneuvers.

18 TIG. The time of ignition (prethrust) or time of cutoff (while thrusting). The changeover in definition occurs at ignition if an impulsive burn and at first TGOCALC (nominal TIG+2) if steering. This item is scaled, centiseconds/2^{28}. It undergoes a single-shot
calculation by P39, P34 and P35 (prethrust, time of ignition); a single-shot update by P40 for slipped TIG when integration for AVE G cannot be completed in time (time of ignition); a single-shot computation of the time of engine cutoff by P40 impulsive burn logic; or two-second updates of time to engine cutoff, initiated at the first steering pass (nominal TIG+2). Upon engine failure, the most significant half of TIG is set to \(-2^{48}\) and the least significant half remains unchanged.

DELLT4 (The desired transfer time) The time from TIG until the target (RTARG) is reached, scaled centiseconds/\(2^{28}\). It is used as an input to the INITVEL subroutine and calculated by each user of this subroutine.

RTARG. The aimpoint vector X, Y, Z, in either earth-centered or lunar-centered coordinates and scaled meters/\(2^{29}\). The origin of the coordinate system is the same as that of the CSM state vector at TIG. Caution must be exercised in ground/AGC communications whenever the spacecraft is operating near the "sphere-of-influence" switchover point. Bit 12, flagword 8 (CMOONFLG) indicates whether the CSM state vector is earth- or moon-centered. This parameter is calculated in P34/P74, P35/P75, P38/P39, P78/P79 and updated in the Initial Velocity Subroutine.

TGO. The time to go until engine cutoff, scaled centiseconds/\(2^{28}\). At TIG-5, for an impulsive burn (TGO < 6) TGO is calculated once and represents the time from now until engine cutoff. If the estimated maneuver time is greater than six seconds, active steering is used and TGO becomes the length of time from the last PIPA reading to engine cutoff. During this steering burn, TGO is calculated each two seconds from start steer to stop steer. Start steer begins at TIG+2 for nominal TIG-0 ignition and at TIG+4 for slipped ignition.

PIPTIME1. The time (T2/T1) at which the PIPAs are read, scaled centiseconds/\(2^{28}\). Integration stores the preread state vector time in anticipation of reading PIPAs at that time. PIPASR stores TIME2/TIME1 every two seconds during Average g (TIG-30 to P40/41 exit; etc.). Since the group is not a snapshot quantity, their values as transmitted may not be valid simultaneously.

2-33
DELVs. The sampled X, Y, & Z PIPA accumulations (velocity increments) with compensation for PIPA bias and scale factor errors. These quantities are in the stable member coordinate system and are scaled, \((\text{cm/sec})/(5.85 \times 2^{14})\). Calculation takes place every two seconds during AVE G. The variation with time and the range of values depend on the acceleration level and compensation. There is a zeroing of all low-order components and a momentary zeroing of DELVY and DELVZ prior to the loading of PIPA contents into respective high-order words (part of READACCS, or REREADAC task). PIPA compensation follows in Servicer job (inhibited, so that all or not PIPA compensation shows up).

PACTOFF (pitch), YACTOFF (yaw). The SPS engine gimbal-actuator trim angle estimates in the pitch and yaw planes (used to align the engine with the vehicle cg), scaled (seconds of arc)/(85.41 \times 2^{14}). These values are added to the DAP filter output every DAP sample period as part of the engine gimbal servo command. The variation is usually less than \pm 2 degrees over the course of a burn. These are the upper halves of the double-precision registers, PDELOFF and YDELOFF. These items are set initially by astronauts in P40 (R03). They change significantly at switchover which is about 3.4 seconds after ignition for CSM; 6.4 seconds for CSM/LM. Incremental changes are made every 0.5 second after switchover and an end-of-burn update is made following the engine shut-down command.

PCMD (pitch), YCMD (yaw). The pitch and yaw SPS engine gimbal-actuator position commands from the respective TVC DAPs, scaled (seconds of arc)/(85.41 \times 2^{14}). The expected range of values is between \pm 1 degree, while the maximum possible values are \pm 6 degrees. They are calculated at every TVC DAP sample period: 40 ms for CSM, 40, 80 ms for CSM/LM.

CSTEER. The Cross Product Steering Constant, "c", used by P40/P1 in the equation \(\Delta m = c\Delta t - \Delta\gamma\) and certain prethrust computations. It is scaled "c"/4. The least significant half of this word will always be made a \pm 0 whenever CSTEER is set to ECSTEER or zeroed. The value range will be from -4 to +4 (less one bit). It is set by P40 prethrust to ECSTEER if a Lambert burn. It will be zeroed by P40 prethrust if an external \(\Delta V\) burn and also by P41 prethrust.
Spares. The first half of each spare contains 000000₈. The second half is ARUPT (the contents of the accumulator when the telemetry interrupt was recognized.

REFSMMAT. Six elements of REFSMMAT, double precision quantities, transmitted R_1C_1, R_1C_2, R_1C_3, R_2C_2, and R_2C_3, each scaled 2^{-1}. REFSMMAT is the 3×3 matrix used to convert between reference coordinates and stable member coordinates. The remaining three components of REFSMMAT may be computed as follows:

$$R_3C_1 = (R_1C_2)(R_2C_3) - (R_1C_3)(R_2C_2)$$

$$R_3C_2 = (R_1C_3)(R_2C_1) - (R_1C_1)(R_2C_3)$$

$$R_3C_3 = (R_1C_1)(R_2C_2) - (R_1C_2)(R_2C_1),$$

where R = ROW and C = COLUMN.

REFSMMAT is calculated in P51, P52, P53 and P54.

TEN FLAGWORDS (0, 1, ... 9). Bit assignments are as follows:

<table>
<thead>
<tr>
<th>Flagword</th>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>Not used. Should always be 0.</td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>JSWITCH. Bit set to 1 within orbital integration routine to indicate that extrapolation of W-matrix is being carried out in orbital integration routine (in contrast to the state vector extrapolation likewise done by the routine). Would only become 1 if bit 1 of FLAGWRD3 were 1.</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>MIDFLAG. Set to 1 within orbital integration routine at beginning of time step when magnitude of conic position vector is greater than the constants RME (earth-centered) or RMM (moon-centered) and set to 0 if less than these constants. If MIDFLAG is set to 1 integration will include secondary body and solar perturbations to the orbit.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>MOONFLAG. Set by orbital integration to 1 or 0 when integrating the stored CSM and LM state vectors; 1 indicates lunar orbit, 0 indicates earth orbit. Also set to 1 or 0 in integration when switching coordinate centers. MOONFLAG is also set to 1 or 0 by callers of INTEGRVS which specify the state vector to be integrated and in P27, P76, V67 and V47 when using integration subroutine to permanently store state vectors.</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td>NORFHOR. A 1 indicates far horizon. A 0 indicates near horizon. Set to 0 or 1 in P23 from astronaut input of near or far horizon. Used to determine which point of tangency equation is to be used (near or far).</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>ZMEASURE. A 1 indicates measurement planet and primary planet different. A 0 indicates measurement planet and primary planet the same. Set 0 in P23 when state vector sphere of influence and sighting planet measurement are in the same sphere of influence; otherwise set to 1. Used in P23 to pick up the vector difference between state vector and landmark vector.</td>
</tr>
</tbody>
</table>
| 0 | 9 | NEEDLFLG. Bit set 1 by a verb 62 or verb 63 and set 0 by a verb 61 (or by a fresh start), used to control the information presented on the FDAI attitude error needles by the RCS DAP (it has no effect on the TVC or Entry DAP's.) If the bit is 1 and in addition the N22ORN17 bit (bit 6 of flagword 9) is 1, "total attitude error" with respect to the contents of N22 is displayed, defined as THETAD - CDU resolved into roll pitch and yaw coordinates. If the bit is 1 and in addition the N22ORN17 bit is 0, "total astronaut attitude error" with respect to the contents of N17, is displayed, defined as CPHIX - CDU resolved into roll pitch and yaw coordinates. CPHIX can be loaded with the present CDU angles by a verb 60. If the bit is 0, then, independent of other bit settings, RCS DAP phase-plane errors, ERRORX, ERRORY, and ERRORZ, which are some times called "auto-pilot following errors" are displayed. Polarity of the error is, as in the other displays, desired minus actual. The "total attitude error" and the "total astronaut attitude error" are defined as a difference between "present" attitude and
<table>
<thead>
<tr>
<th>Flagword</th>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>an attitude specified in N22 or N17. Consequently, these attitude errors may assume large values. The phase plane attitude errors, however, are quantities used by the RCS DAP to command jet firings when the CMC MODE SWITCH is in AUTO and HOLD and thus should generally remain within the selected RCS DAP attitude deadband.</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>IMUSE. Bit set 1 to indicate that "IMU is in use". It is set 0 each time a verb 37 program change is processed (unless bit 7 of this word is 1), and is set 1 when routine 02 is performed (at the start of P20, P22, P40, P41, P47, P52 and P54). It is also set 1 if the IMU is on at the start of P51 and P53 (if IMU not on, P05 is requested), and also when the IMU CDU zeroing subroutine is performed (verb 40 noun 20 or during IMU prelaunch initialization), provided in the latter case that the program number was not 0 (it would not be for the P01 IMU prelaunch initialization, of course). If the bit is 1 and the IMU is turned off, alarm 02148 is generated. Bit not set at start of P61 or P62.</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>RNDVZFLG. Bit set 1 to indicate that program P20 (Rendezvous Navigation) is "running". It is set to 1 shortly after a verb 37 input of P20 (coming e.g. from P00), and causes a restart to transfer to "P1KUP20" if encountered at any time when the bit is 1 (subsequent computations, however, may be negligible). The bit is set 0 by a verb 56, by a verb 37 input of P00, by P06, or by a verb 37 input of P20 if the bit is 1 (this would cause a re-initiation of P20 functions). If the bit is 1, the value of bit 8 of this word is not changed if a V37 input is received (other than P00, of course). If a V37 input of P20 is received with the present program being other than P20, performance starting at "P1KUP20" is enabled, with bits 7 and 5 of FLAGWRD1 being set 1. Start of P22 and P23 sets bit 0.</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>R53FLAG. Bit set 1 to indicate that a request for optics marks (flashing verb 51) has been initiated by routine 21 (used with routine 22 for P20) or by routine 53 (used with P22, P51, and P52). Bit is reset 0 at start of routine 52 (for use in logic that causes routine 53 to be initiated if optics mode not "computer control"), and is also set 0 at</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>the end of routine 21 (after the "enter" indicating termination of marks) and routine 53 (after the completion of marks if some were taken and landmark tracking, and after the reconfirmation of the star used if marks taken and star tracking).</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>F2RTE. A 1 means Return to Earth Targeting is operating in the time-critical mode. A 0 means Return to Earth Targeting is operating in the fuel-critical mode. In the time-critical mode the program generates a trajectory which meets the re-entry constraints and returns the spacecraft in the shortest possible time. In the fuel-critical mode the program generates a trajectory which meets the re-entry constraints and minimizes the impulsive velocity change required to achieve this trajectory. Bit set 0 if the astronaut sets the desired velocity change (ΔV_D) equal to 0 or to a value less than the minimum required impulsive velocity change. Otherwise a time-critical trajectory is provided (bit set 1). Bit is set and tested in P37.</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>TRUNFLAG. Bit set 1 to indicate that driving of optics trunnion allowed in R52 (due to fact that desired trunnion angle is not greater than 50° and is not less than 0°). If not tracking the LM and trunnion angle exceeds 90° (bit 7 of FLAGWRD3), alarm 04048 is generated. If desired trunnion angle is more than 50° but less than 90°, alarm 04078 is generated. The allowable driving refers to location of object being sighted (actual loading of desired optics interface cells takes place only if optics in Computer Control Mode). Driving of the optics shaft (loading of "desired shaft angle" cell) takes place regardless of the value of the TRUNFLAG bit; driving of both takes place in a routine entered every 0.48 second ("T4RUPT" package), and is subject to optics moding constraints there. Bit set 1 at start of routine 52, but required setting is re-evaluated each time a new value of desired optics angles is computed.</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>FREEFLAG. Bit used for temporary program control purposes to control the internal performance of a subroutine. Also used in routine 54 (likewise P51-P54) to control performance of star data check routine, where it is initialized to 1 and set to 0 if V32E performed for V06N05 display.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>Not used.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>KFLAG. A 1 indicates preferred central angle search sector less than 180°. A 0 indicates greater than 180°. Set 1 or 0 in P17.1 and/or S17.1. Tested in P17.1 and S17.2.</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>NJETSFLG. Bit set 1 in routine 03 (entered via verb 48) if bits 10 and 7 of DAPDATRI are not equal, indicating that two-jet X translation is specified (setting also made if DAP initiation is required, e.g. transition between TVC and RCS DAP or DAP start-up, so DAPDATRI could have been changed by V21N46 means). If these bits are equal, bit is set 0, indicating 4-jet X translation. The bit (i.e. #15) is used in the computation of the burn interval required in the "time burn" test done 5 seconds before ignition in P40, and for P41 X-axis thrust.</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>STIKFLAG. Bit set 1 in RCS DAP computations if bits 6-1 of channel 31 (rotational hand controller inputs used for either attitude rate commands (not in free mode) or for angular acceleration commands (in free) are not 778. STIKFLAG set to 1 means that the astronaut has assumed rotational control of the S/C and P20 automatic tracking is inhibited. The up-link activity light will be lighted during this period if the present and requested gimbal angles differ by more than 10 degrees. The bit is reset to 0 by an input of V58 and V37.</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>ERADFLAG. Bit set 1 to specify that a coordinate transformation should use the Fischer ellipsoid for determining earth radius, and set 0 to specify that the pad radius (6 373 338 meters) should be used. If the moon is the sphere of influence then bit set to 1 to use fixed lunar radius (1 738 090 meters) and bit set to 0 to use the magnitude of the lunar landing site (RLS) as the lunar radius. A value of 1 is set in P22 in conjunction with the computation of landmark positions (a value of 0 is used in routine 52 for optics pointing computations, however, in this program); a value of 0 is set in P11, P21, when routine 30 computations are carried out, and in entry.</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>Not used.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>ENG2FLAG. SPS/RCS thrust indication for prethrust burn attitude computations. Set 1 by P41 to indicate RCS thrust levels. Cleared to 0 by P40 to indicate SPS thrust levels.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>TARG1FLG. Bit set 1 in "REDOP20" (see bit 7 of FLAGWRDO) after the initial performance of routine 61, to indicate to routine 52 that tracking of the LM as a target (in contrast to a star or landmark) is required. Bit is set 0 each time a verb 37 program change is processed, as well as when R51 is entered (P52 or P54), or P22.</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Bit has two distinct functions, hence two difference mnemonics.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>TARG2FLG. Bit set 1 at start of P22 to flag the fact (combined with bit 10 = 0) that tracking of a landmark is required by routine 52. Bit is set 0 in P52, P54 (indicating, with bit 10 = 0, that tracking of a star is required).</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>R23FLG. Bit set 1 by extended V54 (COAS MARKING) reset 0 by extended V57 (regular optics marking). Communication to R22 as to which marking system is operating.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>VEHUPFLG. Bit set 1 to specify that CSM state vector is to be updated by rendezvous (or orbital) navigation measurements; a value of 0 means that the LM state vector is to be updated. Average G always updates the CSM state vector; routine 32 (entered via verb 84) always updates the LM state vector. Bit can be set to 1 by a verb 81, and to 0 by a verb 80. Bit cleared at the start of P20. Bit is set to 1 in P22 just before the computation of state vector change due to landmark measurement (which is followed by the V06N49 display).</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>UPDATFLG. Bit set to 1 to indicate that updating of state (in P20) vector by marks is allowed. Bit is set 0 each time a verb 37 program change is processed, but is set 1 again at the start of P20 (or if bit 7 of FLAGWRDO = 1), and at the start of P17, 30, 31, 34, 35, 38, 39 74, 75, 77, 78, and 79. It is set 0 for a "proceed" input to the V16N45 flash in P34/P74 (indicating that the "final" computation cycle selected). The setting to 1 based on bit 7 of FLAGWRDO only takes place if the previous program was not P20 but the new one specified.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>1/cont</td>
<td>7</td>
<td>is P20. Bit also set to 0 at the start of P41, P52, and P54 (the setting is redundant since the V37 processing logic leaves the bit 0 anyhow). Bit also set 0 by an input of verb 56, and by the Target Delta V Routine (R32). It is also reset and set during the prethrust computations to protect erasable memory. A value of 0 causes the P20 state vector update to be bypassed.</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>IDLEFAIL. Set 1 in R40 routine in response to the astronaut PROCEED response to the flashing V97. A 1 will inhibit setting up the flashing V97 again for at least 2 seconds. Set 0 in V37 2 seconds after the astronaut ENTER response to the flashing V97. A 0 will permit R40 to set up another flashing V97. Tested in LOTHRUST exit from cross product steering routine.</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>TRACKFLG. Bit set to 1 to indicate that performance of P20 is allowed (including automatic attitude maneuvers and optics pointing). Set to 1 at the same times as bit 7 of FLAGWRD1, and reset to 0 each time a verb 37 program change is processed, as well as by an input of verb 56. If bit becomes 0 (e.g. via verb 56), then computations of routine 22 and Routine 52 for this tracking are halted. An attempt to initiate (via verb 57) the performance of R21 or R23 is rejected (alarm 0406) unless both this bit and bit 7 of FLAGWRDO are 1. Bit also set 0 if IMU coarse aligned or caged & start P52/P54.</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>TRMO3FLG. Bit set 1 when request made to terminate P03 before P03 is completed. Otherwise bit set 0.</td>
</tr>
</tbody>
</table>
| 1 | 3 | SLOPESW. Set to 1 at the start of the LAMBERT routine, and reset to 0 at the end of the first pass through the internal LAMBERT iteration process (specifically, inside the ITERATOR subroutine, which calculates the increment to be added to the independent variable for use on the next pass). The bit controls the type of computation performed in the ITERATOR subroutine. If the first pass through the internal LAMBERT iteration process yield satisfactory results, however, so that additional passes are not required (which will generally only occur when a very good guess of the independent
<table>
<thead>
<tr>
<th>Flagword</th>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>variable is input to LAMBERT, such as occasionally during powered-flight guidance computation sequencing), then ITERATOR is not called, and consequently the bit is left set to 1 when LAMBERT is exited. This bit is equivalent to the switch f_9 of Section 5.5 of this GSOP.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>GUESSW. Set to 1 to indicate to the LAMBERT routine that an initial guess of the independent variable used in the internal LAMBERT iteration process is not available, thus forcing LAMBERT to start iterating from the mid-point of the range of the independent variable. The bit is set to 0 to indicate to LAMBERT that an initial guess is available; this will in general greatly reduce the number of iterations and the computation time inside LAMBERT. The Initial Velocity Subroutine INITVEL always sets the bit to 0 internally immediately after it calls LAMBERT, whether or not INITVEL is in its conic mode (as during powered-flight guidance computation sequencing) or its precision mode (as during targeting). The bit is also set to 1 by INITVEL, but only when INITVEL is entered via a special entrance. This special entrance is used only by the Pre-TPI Maneuver Program P34/P74, the Pre-TPM Maneuver Program P35/P75, and the Lambert Aim-Point Maneuver Pre-Thrust Computation Routine. This bit is equivalent to the switch f_1 in Section 5.5 of this GSOP.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>AVEGFLAG. Bit set 1 to permit cycling of Average-G computations to continue at a two-second rate, and reset to 0 to halt this cycling and cause initial conditions to be set for a period of free-flight operation. Bit is set 0 by the processing of a V37 input if bit 6 of FLAGWRD1 = 1 (the V37 processing is then resumed when the Average-G routine detects bit 1 of FLAGWRD1 = 0 and has completed the necessary initializations: consequently, Average-G is always terminated when a V37 input is acted upon). Bit is set 1 when Average-G is "started" (after state vector initialization in P11, about 30.5 seconds before ignition for P40, about 15 seconds before nominal ignition for P41, and about a minute after input of the program number for P47 and P61 or P62).</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>cutoff routine. is scheduled at the appropriate time (thrust on time as predicted by the timeburn routine) and IMPULSW is cleared to 0. In non-impulsive steering burns IMPULSW is set 1 when the computed time to engine cutoff falls below four seconds. This will result in the scheduling of the SPS engine cutoff routine for the appropriate time; IMPULSW is cleared to 0 when the scheduling is completed to prevent multiple scheduling. (In the event of thrust failure detection by R40 the timeburn calculations will be scheduled, impulsive re-ignition is handled normally.)</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>XDELVFLG. An indication of targeting/guidance type: 1 for external delta-V; 0 for Lambert. Set 1 by External Delta-V Targeting Program (P30). Cleared to 0 by all Lambert targeting programs.</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Bit used for three distinct functions, hence assigned three separate mnemonics. ETPIFLAG. A 1 means an elevation angle has been input to P34/P74 and that TPI time is to be computed. A 0 means that TPI time is input and an elevation angle is to be computed. Bit set 1 on PROCEED response to V06N55 display with R2 = 0. FIRSTFLG. A 1 means initialization pass for Lambert targeting in P40. A 0 means not initialization pass. Set 1 during pre-thrust in P40/P41. Set 0 when Lambert starts about TIG -30 seconds. Tested every Lambert update. OPTNSW. A 1 means SOI phase of P38/P78. A 0 means SOR phase of P38/P78. Set 1 at PROCEED response to V04N06 display if option code in R2 is 1 (SOI phase), set 0 if R2 is 2 (SOR phase).</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>FINALFLG. Set 1 in P34/P74, P35/P75, P38/P78, P39/P79, P37 for a PROCEED response to the V16N45 display if FINALFLG is 0. Initialized to 0 at the start of P34/P74, P35/P75, P38/P78, P39/P79, P37. Set 0 if it has a value of 1 and the PROCEED response to the V16N45 display is taken. The N45 display has R3 set to -00001 if this bit is 0.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>AVFLAG. Bit set 1 at start of P74, P75, P77, P78, P79 to indicate that the LM is the active vehicle. Bit set 0 at start of P34, P35, P78, P79, P17 to indicate that the CSM is the active vehicle.</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>PFRATFLG. Bit set 1 in P40 and P41 just before the V06N22 display of gimbal angles, after computations of the "preferred IMU orientation" for the burn. Bit is reset to 0 in P52 or P54 of routine R51.</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>CALCMAN3. Bit set to 1 in large attitude maneuver routine. Originally intended to indicate whether final roll maneuver was required, but, since automatic gimbal-lock avoidance has been eliminated, this bit actually is functionless.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>CALCMAN2. Bit set 1 at end of large attitude calculation of maneuver parameters and reset zero after some computations concerning initial conditions for generation of the commands have been completed. Bit signifies that first iteration through the command generation equations is being performed; depending on phasing of the telemetry output with respect to the guidance computations, the "1" setting may or may not be observed on the downlink.</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>NODOFLAG. Bit set 1 to cause inputs of program numbers other than 00 (via V37 means) to be rejected unless TVC DAP, or SPS engine, is on, in which case new program number automatically made 0. Bit set 0 if R00 or in the processing of the V37 input if number of new program is 0. Bit is set 1 in P62 after the entry DAP is initialized (shortly after the "enter" response to checklist code 000418).</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>Not used.</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>GLOKFAIL. Bit set 1 when the CALCGA routine computes a middle gimbal angle in excess of 60°. A code 401 program alarm is then issued by CALCGA. GLOKFAIL is tested (and then reset to 0) by the IMU Calibration and Prelaunch Alignment Programs to determine the feasibility of requested IMU positions. Flight Programs P52, P54, P61 and P62 call CALCGA, however, they do not test GLOKFAIL, but a 401 alarm is possible.</td>
</tr>
</tbody>
</table>
REFSMFLG. Bit set 1 if a meaningful [REFSMMAT] (reference to stable member matrix) is available, i.e. the alignment of the IMU is known in inertial (reference coordinates) space. Bit set 1 in P11 shortly after liftoff deduced (and after [REFSMMAT] loaded). Bit is set 0 if the IMU is coarse aligned or caged, and is also set 0 for normal sequences through P05 and P06. Bit is set 0 briefly in P51 and P53 while the IMU orientation information obtained from star sightings is being loaded into [REFSMMAT], and is then set back to 1 (just before transfer to "GOTOPOOH" at the end of the program). In P52 or P54, bit would be set 0 if routine R50 performed coarse align, and bit is set 1 just before the checklist flash of 000158 to perform star acquisition: bit is not set 0 while new values being loaded into [REFSMMAT] in routine R50, so that restart protection of P51 and P53 not applicable here. If [REFSMMAT] option selected for P52 or P54, the bit is not set 1, but instead is left at 1 (since if bit is 0 when P52 or P54 selected, then P51 is requested if the IMU is on).

LUNAFLAG. Used in lat-long subroutine. A 1 means lunar lat-long. A 0 means earth lat-long. Set to 0 or 1 by routines that call lat-long subroutine.

P22MKFLG. A 1 means the block of landmark data on the P22 downlist is valid. A 0 means not valid. Set 0 upon entry to P22. Set 1 in P22 after the mark data which is taken upon the present landmark has been moved from a VAC area to the SVMRKDAT table in erasable memory to avoid loss of data if a restart occurs.

VFLAG. Bit initialized to 1 at the beginning of the star selection routine (entered by P52 and P54), and reset to 0 if a pair of stars found that satisfy all criteria. If bit is still 1 at the end of the star table search, alarm 04058 is displayed. Cell used for program control purposes (temporarily set 1, then back to 0) within star table search program after the first pair found.

2-46
<table>
<thead>
<tr>
<th>Flagword</th>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>Not used.</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>PRECIFLG. Set to 1 in the integration routine on calls to CSMPREC, LEMPREC, INTEGRVS, and in P00 when integrating LM. Set to 0 when completing integration and in P00 when integrating CSM. PRECIFLG = 0 engages 4 time step logic in integration when major mode is 00.</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>CULTFLAG. Bit used in automatic star selection routine (performed with P52 and P54) as an indicator (if 1) that the particular star being checked is too close to the computed positions of the earth (about 4 minutes after response to the checklist code 00015₈), sun, or moon. Bit also used in optics angle coordinate transformation routine to indicate (if bit 1 when return from the routine) that the indicated sextant trunnion angle required is in excess of 90°: this setting is used in the automatic optics positioning routine (R52) to bypass drive of the trunnion, as well as to generate priority alarm 0404₈ if LM not being tracked. Bit otherwise set 0 by routine.</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>ORBWFLAG. Bit set 1 if W-Matrix is considered valid for use in performing orbital navigation. Bit 1 of flag-word 5 is used for the analogous function with rendezvous navigation. In P22 and P23 bit is set 1 for a valid W-Matrix and 0 for an invalid W-Matrix. Set 0 in P27 after receipt of a CSM state vector update, at the start of P20 and in P22 if the reduction of the W-Matrix to 6×6 form after completion of the mark information for a given object overflows. Set 0 in orbital integration if overflow occurs when integrating the W-Matrix. Set 0 in V67 following an ENTER followed by PROCEED on N99 display. Tested in AVETOMID: if bit 1 the 6×6 W-Matrix is integrated to PIP-TIME using CSM state vector. Also tested in P00 periodic integration: if 1, 6×6 W-Matrix is integrated to CSM state vector time (TETCSM) using CSM state vector.</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>STATEFLG. Set to 1 if the permanent state vector is to be updated by orbital integration. Bit is checked after completion of integration (either CSM or LM) and if it is 1 it is reset to 0 and the appropriate loading of permanent and downlink state vectors (either CSM or LM) is</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>(cont)</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>INTYPFLG. Set to 1 if conic extrapolation to be done in orbital integration, set to 0 for precision extrapolation.</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>VINTFLAG. Set to 1 if CSM state vector to be integrated; set to 0 if LM state vector to be integrated. Set internally in integration on calls via CSMPREC (conic), LEMPREC (conic) and by callers of INTEGRV and INTEGRVS.</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>D6OR9FLG. Used by orbital integration for W-Matrix integration. A 1 means 9×9 W-Matrix is integrated for P22. A 0 means 6×6 W-Matrix is integrated for P20, P23.</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>MRKIDFLG. Set to 1 if a mark/extended verb display is waiting for a response: it signifies that a display of this type is in the "ENDIDLE" routine of the DSKY package ("pinball").</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>PRIODFLG. Set to 1 if a priority display is waiting for a response. It signifies that a display of this type is in the "ENDIDLE" routine of the DSKY package.</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>NRMDIFLG. Set to 1 if a normal display (most of the displays in the program are in this category) is waiting for a response: it signifies that a display of this type is in the "ENDIDLE" routine of the DSKY package.</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>PDSPFLAG. Set to 1 to indicate a priority display status exists. This will lock out mark displays and normal displays.</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>MWAITFLG. Bit included in logic assignments to permit function similar to bit 10 to be applied to mark/extended verb displays, but bit is not set by program. Consequently, bit is expected to remain 0.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>4 10</td>
<td>NWAITFLG. Set to 1 if a normal display is waiting to be initiated (e.g. program attempts to initiate a normal display when an extended verb or mark display is occupying the DSKY). Helps give DSKY sequence of crew-initiated display, crew-initiated monitor display, priority display, interrupted mark/extended verb display, interrupted normal display, and waiting normal display.</td>
<td></td>
</tr>
<tr>
<td>4 9</td>
<td>MRKNVFLG. Set to 1 if a mark/extended verb display attempt found the display system busy (due to crew or uplink use for a display, including an externally initiated monitor display). Bit reset after appropriate display initiated (following key release response).</td>
<td></td>
</tr>
<tr>
<td>4 8</td>
<td>NRMNVFLG. Set to 1 if a normal display attempt found the display system busy (cf. bit 9).</td>
<td></td>
</tr>
<tr>
<td>4 7</td>
<td>PRONVFLG. Set to 1 if a priority display attempt found the display system busy (cf. bit 9).</td>
<td></td>
</tr>
<tr>
<td>4 6</td>
<td>PINBRFLG. Set to 1 if it is concluded that "interference" with the internally generated display has taken place (e.g. an enter verb was used but the associated noun was not that requested by the program when the internally generated display was produced), or if a termination for an extended verb/mark routine is performed with bit 13 of this word = 1. Bit reset 0 upon successful conclusion of a priority or normal display after having been used to bypass internal checks that otherwise would cause a program abort.</td>
<td></td>
</tr>
<tr>
<td>4 5</td>
<td>MRUPTFLG. Set to 1 if a mark/extended verb display or display attempt has been interrupted by a priority display.</td>
<td></td>
</tr>
<tr>
<td>4 4</td>
<td>NRUPTFLG. Set to 1 if a normal display or display attempt has been interrupted by a priority display or by a mark/extended verb display.</td>
<td></td>
</tr>
<tr>
<td>4 3</td>
<td>MKOVFLAG. Set to 1 briefly if a mark/extended verb display is to interrupt a normal display (used to control internal program branching, whereupon it is reset to 0).</td>
<td></td>
</tr>
<tr>
<td>4 2</td>
<td>Not used.</td>
<td></td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>XDSPFLAG. Set to 1 to indicate that a mark display status exists. This will lock out normal displays.</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>DSKYFLAG. Bit set 1 when any keycode input is received from either DSKY, and not subsequently reset 0 (barring another fresh start). If bit is 0, display of quantities on DSKY lights is suppressed, leaving all DSKY lights blank. Bit is not set to 1 by an uplink input.</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>Not used.</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>Not used.</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>V59FLAG. Bit set 1 at the start of P23 in conjunction with initiation of a V59 display. Reset 0 if a proceed or enter response is received. If a mark is made a special display job is set up to display the calibration data at MARKDISP in R57 using a V06N87. After display of V06N87, V59FLAG is reset to prevent display from recurring.</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>INCORFLG. Bit set 1 in R22 (performed for P20) and P22 to indicate that computation pertinent to the first incorporation of observation data from a certain optics mark is being made. After this data has been incorporated in the state vector, bit is set 0 and a second incorporation is made.</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>PRFTRKAT. Preferred attitude flag. Defines to which attitude the spacecraft is to be aligned by R61. Set 1 by turn on of P20 or V76E. Reset 0 by V77E. A 1 means preferred tracking attitude. A 0 means X-axis attitude.</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>DMENFLG. Bit set 0 at the start of processing of optics mark data from a given object in P22 to indicate that r_1, W_6, W_7, W_8 have not been computed yet; bit set 1 after computation of these items. Bit also set 0 at the start of R22 (of P20).</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>COMPUTER. Bit set 1 as part of a fresh start and not subsequently changed, hence should remain at 1. Indicates that computations are being performed by CSM computer (as contrasted with LM computer), for use in those routines otherwise identical between the two computers. It is in erasable memory to permit the interpretive language bit-sensing orders to be used.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>ENGONFLG</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit set 1 just before the SPS engine is turned on (Bit 13 of channel 11 set 1), and reset to 0 just before the engine is turned off (bit 13 of channel 11 set 0). Used in the event of a restart to determine the proper setting for the engine-on channel bit (bit 13 of channel 11); if set 1 engine should be on.</td>
</tr>
<tr>
<td>3AXISFLG</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit set 1 prior to entering R60 if the attitude maneuver to be made is specified by 3 angles. If it is zero, another routine is performed to compute the required angles from information on the spacecraft axis to be pointed and the direction in which it is to be pointed. Bit is reset 0 before exit is made from R60. Bit set 1 for uses of attitude maneuver routine based on input of V49 for R62.</td>
</tr>
<tr>
<td>GRRBKFLG</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set 1 when a V75E is executed, to serve as a backup liftoff signal. Bit tested before and after gyro-compassing during each half second cycle of P02 and if bit is 1 or bit 5 of channel 30 is 0 (the prime liftoff signal input) then P11 is started. Same two bits also checked for control purposes by V43.</td>
</tr>
<tr>
<td>R60FLAG</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When bit set 1 R61 will use R60 to perform attitude maneuver. When bit set 0 R61 will compute desired gimbal angles and determine whether R60 maneuver is necessary. Bit is set and reset in P20 initialization and P20 restart (P20 in background when targeting program is selected via V37). Tested in CRS 61.1.</td>
</tr>
<tr>
<td>SOLNSW</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to 1 by the LAMBERT routine if the routine could not accurately solve the problem with which it was called (i.e. if sufficient convergence was not achieved to the specified transfer time, or if the subtended true anomaly difference between the two input position vectors was less than about 1/2 minute of arc). Reset to 0 by LAMBERT if a successful LAMBERT solution was obtained. Set to 1 by the TIME-RADIUS Routine if this routine was called with an orbit having an eccentricity less than about 0.000004, and reset to 0 if the eccentricity was greater than this value (regardless of what the specified terminal radius is, and regardless of whether this radius could be reached conically.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>from the input state vector). Thus, for the TIME-RADIUS Routine, the resetting of this bit to 0 does not necessarily imply a successful TIME-RADIUS solution. This bit is never tested by any of the mission programs. This bit is equivalent to the switches f_5 and f_9 of Section 5, 5 of this GSOP. These two switches are represented by the same bit in the AGC.</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>MGLVFLAG. Bit used by MIDGIM subroutine. Set 0 if middle gimbal angle of the active vehicle to the input delta velocity vector was computed. Set 1 if the input delta velocity vector was converted to local vertical coordinates of the active vehicle.</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>RENDWFLG. Bit set 1 if W-Matrix is considered valid for use in performing rendezvous navigation (using P20). Bit 6 of FLAGWRD3 is used for the analogous function with orbital navigation (P22). This bit is set to 1 in R22 after processing of a set of mark information has been started. Set 0 by orbital integration if W-Matrix integration overflows. Set 0 by V67 if new data entered in response to V06N99. Set 0 by P27 on state vector update. Set 0 by P22, P23. Tested in AVETOMID: if bit is 1 W-Matrix is integrated to PIPTIME using pre-thrust state vector. Also tested in P00 periodic integration: if 1 W-Matrix is integrated to CSM state vector time using LM state vector.</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>DAPBIT1. Bit used with bit 14 to indicate current status of DAP.</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>DAPBIT2. Bit used with bit 15 to indicate current status of DAP. Used to implement lockout of V46E and V48E inputs if TVC DAP is running, and to cause restart of RCS or TVC DAP as appropriate if a restart is encountered. Bits are set to 00₂ if a V46E is received (with bits not 10₂) and bits 14-13 of DAPDATR1 (loaded by R03) are 0, signifying that no DAP is desired, and are also set to 00₂ in P62 shortly after response to checklist code 0004₁₈. Bits are set to 01₂ when the RCS DAP is started (after TVC shutdown or after V46E, bits not 10₂, and bits 14-13 of DAPDATR1 unequal) or when RCS DAP computations resumed following a period of TVC DAP operation. Bits</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>6 (cont)</td>
<td>14</td>
<td>set to 00₂ at ignition; set to 10₂ 0.4 seconds later (for TVC DAP indication). Bits set to 11₂ when Saturn Stick Function is called by V46E to indicate Saturn Stick control of T5.</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>Bit used for two distinct functions, hence assigned two separate mnemonics. ENTRYDSP. Set 1 in P62 after N61 responded to, and actuates the entry current display nouns when the entry exit code sequence is used (set 0 to suppress display). Set 0 in P65 before flashing display N69 is activated. Set 1 in P65 after N69 is responded to with a PROCEED. Set 1 at start of P67 if came from P65 with flashing display N69 still active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STRULLSW. A 1 indicates steering and time to engine cutoff computations should be permitted (STEERSW set 1) 2 seconds after ignition. When 0 STEERSW not touched. Cleared to 0 for the V97E response (R40) if re-ignition is for impulsive burn. Set 1 at ignition if non-impulsive burn (steering to be done). Cleared to 0 at re-ignition for impulsive burn.</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>CMDAPARM. Bit set to 1 to "arm" the entry DAP (to allow "entry firings and calculations"). Bit is set to 1 in P62 shortly after bit 11 of this word becomes 1 (with 1/2 second), having previously been set 0 in P62 shortly before start of 00041₈ checklist display. If bit is 0, entry DAP computations are halted after computation of vehicle body rates.</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>GAMDIFSW. Bit set to 1 to permit initialization of entry DAP computations to proceed (see bit 12 of this word), and to permit an entry DAP quantity to be computed as the first difference of the present and previous values of a cell. Bit set to 0 in P62 shortly before start of 00041₈ checklist display, and set to 1 within 2 seconds (the first Average-G cycle following).</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>GONEPAST. Bit initialized to 1 near the start of P63 to prevent lateral control before D > .05g. Switch set 0 when .05g sensed (c.f. INRLSW) and subsequently set to 1 if in P67 bit 8 (GONEBY) of FLAGWRD7 is sensed as 1 (hence is a "latched" version of this bit 8). If this GONEPAST bit is 1, no lateral control computations are done, and the desired lift is set to maximum down (provided that g-limiter constraints are not violated).</td>
</tr>
</tbody>
</table>
RELVELSW. Bit initialized to 0 near the start of P63 and subsequently set to 1 if bit 8 of this word is 1 and the output of the Average-G equations indicates a velocity magnitude of less than about 12883.1ft/s (causes, if 1, "earth-relative velocity" to be used for entry targeting and computations. Also set 0 near start of P61.

Bit used for three distinct functions, hence assigned three separate mnemonics.

KNOWNFLG. Always 1 if earth is sphere of influence. Set as follows if moon is sphere of influence: Set to 1 in P22 if DSKY input indicates that landmark is known (octal digit #1 is odd in R2 for the V05N70 display), and set 0 in same routine if DSKY input indicates that landmark is "unknown" (octal digit #1 is even).

EGSW. Bit initialized to 0 near the start of P63 and subsequently set to 1 when P67 is started (the "final phase" of the entry computations). Used by TARGETING. for range prediction.

R57FLAG. A 1 means do not do optics calibration. A 0 means do optics calibration. Set 0 or 1 and tested within P23.

NOSWITCH. Set 0 after start of P63. Set 1 during P65 if D > 140 ft/s/s, and prevents lateral reversal of roll command on that steering cycle. Unconditionally set 0 before terminating steering cycle.

HIND. Bit initialized to 0 near the start of P63 and subsequently set to 1 when some entry iteration calculations are to be performed. (For orbital entries velocity expected to be less than 27,000 ft/s, these calculations are not expected to be entered and hence bit expected to remain 0.

INRLSW. Bit initialized to 0 near the start of P63 and subsequently set to 1 the first time the sensed drag is 0.05g or more (a "latched" version of bit 3 of this word). For orbital cases, velocity is expected to be less than 27,000 ft/s, bit not subsequently sensed after becoming 1.
<table>
<thead>
<tr>
<th>Flagword</th>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Bit is reset to 0 if bit 6 of IMODES33 is 1, and also in P67 after response to the V16N67 display (see bit 2 of this word).</td>
</tr>
<tr>
<td>(cont)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>TERMIFLG. Bit used in R52 (automatic optics positioning routine) in conjunction with P22 and P52 (i.e. not P20) for an analogous function: it is set 0 at start of routine, and set 1 in R53 after optics marks received.</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>ITSWICH. A 1 means a solution for TPI time has not yet been reached. A 0 means a solution for TPI time has been reached. Set to 1 at the beginning of P34 and P74, and then immediately set to 0 only if the TPI time is given and the elevation angle is to be computed. Bit is tested at SWCHCLR: if 1 it is immediately set to 0 and control is transferred to INTLOOP where the final solution for TPI time is reached; if 0, then either the TPI time or the elevation angle is displayed depending on the setting of ETPIFLAG. ITSWICH also tested at TESTY: if 1 the program looking for a solution for TPI time; if 0 the computed elevation angle is stored.</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>IGNFLAG. Cleared by V37 logic - viz. for P40. Set 1 by TIG-0 to indicate that nominal ignition time has arrived. Note, if TIG-0 finds ASTNFLAG set 1 (crew has OK'd ignition) then ignition is immediate; otherwise ignition waits for receipt of the PROCEED response to the TIG-5 flashing V99 (please enable engine) display. Set 1 (redundantly) by the ENTER response to the flashing V97 (perform engine fail procedure) display. Note, since IGNFLAG is set 1, not cleared, by the "recycle for re-ignition" V97 ENTER response, ignition will be immediate upon receipt of the PROCEED response to the subsequent flashing V99 display.</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>ASTNFLAG. Cleared by V37 logic - viz. for P40. Set 1 by the PROCEED response to the TIG-5 flashing V99 (please enable engine) display. Note, if V99P logic finds IGNFLAG set 1 (nominal ignition time has passed) then ignition is set up immediately, otherwise ignition waits for TIG-0. Cleared also by the ENTER response to the flashing V97 (perform engine fail procedure) display, forcing re-ignition delay until receipt of the PROCEED response to the subsequent flashing V99 display.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>TIMRFLAG</td>
<td>7</td>
<td>Bit set to 1 to permit a self-perpetuating waitlist task to continue, which loads time-to-go with the difference between T_{now} and T_{ig}. The time-to-go cell is displayed automatically by the program for nouns 35, 40, 45, 59, and 99, and hence the bit is 1 while one of these nouns is being displayed (the "time" generally is from nominal ignition or predicted cutoff).</td>
</tr>
<tr>
<td>NORMSW</td>
<td>7</td>
<td>Set to 1 to specify to the LAMBERT routine that it is to use the unit normal vector (to the conic transfer plane) which is provided by the calling program; reset to 0 if LAMBERT is to calculate its own unit normal vector (by crossing the initial and final position vectors of the \textit{transfer}). Set to 1 by the Initial Velocity Routine, \textit{INITVEL} (the only routine which calls LAMBERT) whenever \textit{INITVEL} is called with a (true or offset) target vector which lies inside "the cone"; reset to 0 by \textit{INITVEL} whenever \textit{INITVEL} is called with a (true or offset) target vector which lies outside "the cone". ("The cone" is a mathematically - defined cone whose vertex is the origin of coordinates, whose axis is the 180° transfer direction, and whose semi-cone angle is specified to \textit{INITVEL}.) The semi-cone angle is set to 15° by P34, P35, P38, P39, P74, P75, P78, and P79, because active vehicle transfer angles between 165° and 195° are normally avoided in the targeting procedure. However, if a transfer angle falling within this 180° ± 15° sector is intentionally selected by any one of the above targeting programs, or by the results from any one of the above maneuver program during an intercept trajectory targeted for more than 180°, the Lambert Aim Point Maneuver Prethrust Routine increases the semi-cone angle to 45° so that active vehicle transfer angle will not change from inside to outside the cone angle during the powered maneuver. Such a condition is undesirable since the intercept trajectory would be retargeted during the powered maneuver. Likewise, if the initial transfer central angle falls outside the 15° semi-cone angle, the semi-cone angle is decreased to 10° to reduce the possibility of a transfer angle changing from outside to inside the cone during a powered maneuver. NORMSW</td>
</tr>
</tbody>
</table>
Flagword Bit Meaning
7 10 is set to 0 by P31 and P37 because the semi-cone angle should be set to 10° for these programs. NORMSW should generally remain 0, unless transfers between 165° and 195° are intended. NORMSW is equivalent to the switch f_2 of section 5.5, and to the switch S_R of section 5.3.3 of this GSOP.

7 9 RVSW. Set to 1 to indicate to the TIME-THETA and TIME-RADIUS Routines that the only desired output is the time required to transfer through the specified transfer angle or to the specified radius respectively, and set to 0 to indicate that the state vector at the terminal point is desired in addition to the transfer time. Set to 1 during the course of the computations of the CM Lunar Landmark Selection Program, the Pre-TPI Maneuver Programs P34 and P74, the Pre-TPM Maneuver Programs P35 and P75, and the Stable Orbit Rendezvous Midcourse Programs P39 and P79. Set to both 0 and 1 by the Return to Earth Maneuver Program P37. The bit is equivalent to the inverse of the switch f_6 of Section 5.5 of this GSOP.

7 8 GONEBY. Bit set 0 each time through the entry "targeting" routine (entered every 2 seconds after Average-G is performed, starting about 2 seconds after the beginning of P63 and ending after a response to the V16N67 display in P67 (velocity below 1000ft/s)). Bit is then set 1 again if it is concluded that the vehicle has passed (i.e. overshot) the target. Bit is used to determine the sign (minus if bit 0, otherwise plus) of the R3 display for noun 64 and the R1 display for noun 67, and is also used to determine if bit 10 of flagword 6 should be set: mechanization permits a new sign to be determined each computing interval.

7 7 Not used.

7 6 V37FLAG. Bit set 1 at the same time that bit 1 of FLAGWRD1 is set 1, i.e. when Average-G is "started", and set 0 when the Average-G state vector has been loaded into the orbital integration state vector cells (at the conclusion of the last Average-G cycle, which found bit 1 FLAGWRD1 equal to 0 as a result of V37 action). Consequently, bit would be expected to be set to 0 within about 2 seconds of the time that bit 1 of FLAGWRD1 is set 0.
<table>
<thead>
<tr>
<th>Flagword</th>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 5</td>
<td></td>
<td>Not used.</td>
</tr>
<tr>
<td>7 4</td>
<td></td>
<td>ULOCKFL. Set to 1 if failure of the kkk data check is detected in processing an input from the uplink receiver. The bit can be reset by sending an error reset code via the uplink (the DSKY error reset key does not reset the bit). While the bit is 1, all uplink information except an error reset code is rejected by the program.</td>
</tr>
<tr>
<td>7 3</td>
<td></td>
<td>VERIFLAG. Bit whose value is complemented when the final proceed entry is received in P27, indicating that the uplink information is to be used.</td>
</tr>
<tr>
<td>7 2</td>
<td></td>
<td>ATTCHFLG. Bit set 1 if bits 14-13 of DAPDATR1 are 10\textsubscript{2} when R03 is performed or when the RCS DAP is started (e.g. as a result of V46E or after TVC DAP completion). The bit being 1 means that LM is attached (otherwise, bit is set 0); bit not otherwise sensed in program.</td>
</tr>
<tr>
<td>7 1</td>
<td></td>
<td>TFFSW. Bit set 1 if perigee time is to be calculated, and set 0 if TFF (to a specified interface altitude) is to be computed. When R30 is performed via V82E (every 2 seconds if Average-G is on and on a single-shot basis otherwise) bit is set 1 if perigee altitude at least 300,000 ft above pad radius for earth coordinates or 35,000 ft above lunar landing site for moon coordinates and then is set 0 for calculation of TFF. Hence bit would generally be observed as 0.</td>
</tr>
<tr>
<td>8 15</td>
<td></td>
<td>RPQFLAG. Internal flag in integration to indicate if primary body to secondary body position vector (RPQ) was computed; a 0 indicates RPQ was computed, a 1 indicates RPQ was not computed. RPQ is computed only when MIDFLAG is set 1.</td>
</tr>
<tr>
<td>8 14</td>
<td></td>
<td>Not used.</td>
</tr>
<tr>
<td>8 13</td>
<td></td>
<td>NEWIFLG. Internal flag in integration. Used to engage 4 time step only on the first step of P00 integration; 1 means first step, 0 means not first step.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>CMOONFLG. Indicates origin of "permanent" CSM State Vector; 1 means lunar-centered, 0 means earth-centered. Always set to 0 or 1 depending on MOONFLAG when permanently updating the CSM state vector. Set to 0 in fresh start.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>LMOONFLG. Indicates origin of "permanent" LM State Vector; 1 means lunar-centered, 0 means earth-centered. Always set to 0 or 1 depending on MOONFLAG when permanently updating the LM state vector. Set to 0 in fresh start.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>ADVTRK. A 1 means use auto optics to drive optics to a LMK on advanced ground track. A 0 means use auto optics to drive to star, LM or landmark. Set 1 when entering auto optics via ADVORB (advanced orbit). Set 0 when entering auto optics via R52. Tested in each computational cycle of auto optics.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>P39/79 SW. A 1 means P39/P79 operating. A 0 means P38/P78 operating. Bit set 1 when P39 or P79 is selected. Set 0 when P38 or P78 is selected. Bit tested in code shared by P38/P78, P39/P79 to determine points of return upon execution completion.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>SURFFLAG. Indicates whether LM is on lunar surface. Set and reset manually with extended verbs 44 and 45 respectively. Tested in P00 periodic integration and if set, LM state vector is not integrated. Also tested in orbital integration and if set, the planetary inertial orientation routine is used to transform RLS to reference coordinate system. Lunar velocity is also computed in reference coordinate system.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>INFINFNLG. Set to 1 in the conic TIME-THETA Routine to indicate that the routine was called with a hyperbolic initial state vector and a true anomaly transfer angle which was so large as to require a transfer past the hyperbolic asymptote of the conic, which is physically impossible. Set to 0 in TIME-THETA if a valid physical solution is obtained. Set to 1 in the conic TIME-RADIUS Routine to indicate that the routine was called with a hyperbolic initial state vector, a desired final radius,</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>8 7</td>
<td></td>
<td>and a desired sign of the radial velocity of the final radius (to indicate whether trajectory is to be inbound or outbound here) which would require a transfer past the hyperbolic asymptote of the conic. For example, a spacecraft which is inbound can never return inbound to a radius which is greater than its current radius, and likewise a spacecraft which is outbound can never return outbound to a radius which is less than its current radius. Set to 0 in TIME-RADIUS if a valid physical solution is obtained. Set to 1 during any one (or several) of the internal LAMBERT iterations if the intermediate solution arrived at on this particular internal iteration required a transfer past a hyperbolic asymptote. The LAMBERT routine senses such a situation on the succeeding iteration and adjusts various parameters in an attempt to obtain a valid solution. Set to 0 in LAMBERT if the preceding internal iteration yielded a physically realizable transfer. The bit is never tested or set either way outside the conic subroutines. The bit is equivalent to the switch f_7 of Section 5.5 of this GSOP.</td>
</tr>
<tr>
<td>8 6</td>
<td></td>
<td>ORDERSW. Never set to 1. Set to 0 as part of a fresh start. Used to control the type of computation performed in the ITERATOR routine (part of the conic subroutines). This bit is equivalent to the switch f_4 of Section 5.5 of this GSOP.</td>
</tr>
<tr>
<td>8 5</td>
<td></td>
<td>APSESW. Set to 1 by the TIME-RADIUS routine to indicate that the routine solved for the time required to reach pericenter (or apocenter) rather than the desired radius, because the desired radius input to the routine was less than the pericenter radius (or was greater than the apocenter radius, respectively). Set to 0 by the TIME-RADIUS routine to indicate that the routine attempted to solve for the time required to reach the desired radius, since the desired radius input was greater than pericenter radius and less than apocenter radius. (Such a solution will be reached unless INFINFLG is set to 1). This bit is equivalent to the switch f_8 in Section 5.5 of this GSOP.</td>
</tr>
</tbody>
</table>
COGAFLAG. Set to 1 by the TIME-THETA routine and the TIME-RADIUS routine if either of these routines was called with an initial state vector having a flight-path-angle (measured from local vertical) less than $1^0 47.5'$ or greater than $178^0 12.5'$. Set to 0 in each of these routines if either was called with an initial state vector having a flight-path-angle between these two extremes. The bit is not tested or set either way outside the conic routines, except that it is tested once in the CM Lunar Landmark Selection Program R-35.

8 3 Not used.

8 2 Not used.

8 1 360SW. Used to indicate the type of computation to be performed by the Universal Variable Routine (a subroutine called by the LAMBERT, TIME-THETA, and TIME-RADIUS routines). The bit is not of interest outside these three conic routines and in fact is neither tested nor set either way outside the Universal Variable Routine itself. The bit is equivalent to the switch f_w of Fig. 5.10-4 of Section 5.5 of this GSOP.

9 15 SWTÖVER. A 1 indicates switchover has occurred. A 0 indicates switchover has not yet occurred. Set 1 by SWTCHOVER nominally 3.4 (CSM) or 6.4 (CSM/LM) seconds after ignition to indicate switchover has occurred. Set 0 by V37. Tested by BESTTRIM at SPS shutdown to determine which way trim estimates for next burn should be selected: pre-switchover (0) use the DELFILTER values; post-switchover (1) leave the trim estimates as they are.

9 14 V67FLAG. Set 0 whenever an extended verb V67 is taken. This verb displays the RMS position and velocity errors from the W matrix using a V06N99. If the astronaut then changes these values the bit is set 1. The bit is tested in the V67CALL routine: a 1 means compute new initial W-Matrix values for either rendezvous, orbital, or cislunar navigation; a 0 means do not compute these values.
<table>
<thead>
<tr>
<th>Flagword</th>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 13</td>
<td></td>
<td>V82EMFLG. A 1 indicates moon vicinity. A 0 indicates earth vicinity. Set 1 or 0 by R30 according to whether state vectors are moon- or earth-centered. Bit tested by SR30, 1 when called by R30 to compute PERIGEE, APOGEE radius and PERIGEE, APOGEE height above launch pad or lunar landing site.</td>
</tr>
<tr>
<td>9 12</td>
<td></td>
<td>MAXDBFLG. A 1 indicates maximum RCS DAP deadband (5°). A 0 indicates minimum RCS DAP deadband (0.5°). Set 0 by SETMINDB called by P40 just prior to attitude maneuver R60, and again just prior to manual VG-trim operations after TVC burn. Also set 0 by SETMINDB called by P41 just prior to attitude maneuver. Set 1 by SETMAXDB called by P40 2.5 seconds after shutdown so that RCS is brought up in wide DB to conserve fuel. Set to 1 or 0 by exiting V37 logic (see below) and by extended verb V48 (R03) in response to DAPDATR1 (R1 of N46). Tested by V37 and recorded so V37 at exit from the program can set it back to the original value.</td>
</tr>
<tr>
<td>9 11</td>
<td></td>
<td>V94FLAG. A 1 indicates Extended Verb 94 is allowed. A 0 indicates Extended Verb 94 not allowed. Set 1 before P23 enters R52 so astronaut may re-maneuver spacecraft LLOS before marking. Set 0 after mark so spacecraft does not re-maneuver after that time. Tested at VERB94.</td>
</tr>
<tr>
<td>9 10</td>
<td></td>
<td>SAVECFLG. A 1 means P23 display code used and data stored after mark is done. A 0 means P23 display code used and data stored before mark is done. Used in un- packing of N70/N71.</td>
</tr>
<tr>
<td>9 9</td>
<td></td>
<td>VHFRFFLAG. A 1 allows R22 to accept range data. A 0 stops acceptance of range data. Set 1 by Verb 87. Set 0 by Verb 88. Tested each time a mark is processed by R22.</td>
</tr>
<tr>
<td>9 8</td>
<td></td>
<td>SOURCFLG. A 1 indicates source of input data is VHF radar. A 0 indicates source is optics mark. Set 1 when a VHF radar mark is processed. Set 0 when an optics mark is processed. Tested each time a mark is processed by R22.</td>
</tr>
<tr>
<td>9 7</td>
<td></td>
<td>Not used.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>9 6</td>
<td></td>
<td>N22ORN17. Bit set 1 means use the angles stored in N22 to compute the "total attitude error" for display on FDAI error needles. Bit set 0 means use the angles stored in N17. Set 1 by Verb 62. Set 0 by Verb 63. Set 0 by fresh start. During normal RCS DAP operation if bit 9 of flagword 0 is set (i.e. display "total attitude errors") the bit N22ORN17 is checked every other pass thru Phase 1 of the RCS DAP.</td>
</tr>
<tr>
<td>9 5</td>
<td></td>
<td>QUITFLAG. Set to 1 by extended Verb 96 (which then exits to P00) to indicate that integration should be discontinued. Bit is examined by integration routines which exit if the bit is 1. Reset to 0 in P00 if it was found to be 1. Integration is disabled until a new program (other than P27) is selected.</td>
</tr>
<tr>
<td>9 4</td>
<td></td>
<td>R31FLAG. Bit set 1 at V83PERF in response to V83 to indicate R31 is selected for operation. Bit set 0 at V85PERF to indicate R34 is selected for operation. Tested in R31/R34 to determine formulation of angle RTHETA: if R31FLAG is 1 then angle Theta is computed as the angle between X-body axis and the local horizontal; if R31FLAG is 0 then angle Phi is computed as the angle between SXT LOS and local horizontal.</td>
</tr>
<tr>
<td>9 3</td>
<td></td>
<td>MID1FLAG. Bit set 1 to indicate that MIDTOAV1 called integration.</td>
</tr>
<tr>
<td>9 2</td>
<td></td>
<td>MIDAVFLG. Bit set 1 to indicate that integration was called by MIDTOAV1 or MIDTOAV2 (R41). Bit set 1 engages R41 logic.</td>
</tr>
<tr>
<td>9 1</td>
<td></td>
<td>AVEMIDSW. Set to 1 to indicate that synchronization of state vectors and W-Matrix is in progress in the transition from powered flight to coasting flight and that the powered flight state vector should not be overwritten until the synchronization is completed.</td>
</tr>
</tbody>
</table>
DSPTABs. The eleven registers, DSPTAB through DSPTAB+10D, indicate the status of the DSKY displays. If bits 15 through 12 are 0001, the next 11 bits will indicate the actual status of the DSKY displays; if bits 15 though 12 are 1110, the next 11 bits indicate the "ones" complement of the status to which the CMC will command the DSKY display. Bits 11-1 of DSPTAB+0 through DSPTAB+10D are decoded as follows:

<table>
<thead>
<tr>
<th>DSPTAB Register</th>
<th>Downlink Word Number</th>
<th>Bit Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSPTAB+0</td>
<td>45a</td>
<td>Bit 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R3D4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R3D5</td>
</tr>
<tr>
<td>DSPTAB+1</td>
<td>45b</td>
<td>+R3S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R3D2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R3D3</td>
</tr>
<tr>
<td>DSPTAB+2</td>
<td>46a</td>
<td>R2D5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R3D1</td>
</tr>
<tr>
<td>DSPTAB+3</td>
<td>46b</td>
<td>-R2S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R2D3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R2D4</td>
</tr>
<tr>
<td>DSPTAB+4</td>
<td>47a</td>
<td>+R2S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R2D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R2D2</td>
</tr>
<tr>
<td>DSPTAB+5</td>
<td>47b</td>
<td>-R1S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R1D4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R1D5</td>
</tr>
<tr>
<td>DSPTAB+6</td>
<td>48a</td>
<td>+R1S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R1D2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R1D3</td>
</tr>
<tr>
<td>DSPTAB+7</td>
<td>48b</td>
<td>ND1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ND2</td>
</tr>
<tr>
<td>DSPTAB+8D</td>
<td>49a</td>
<td>ND1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ND2</td>
</tr>
<tr>
<td>DSPTAB+9D</td>
<td>49b</td>
<td>VD1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VD2</td>
</tr>
<tr>
<td>DSPTAB+10D</td>
<td>50a</td>
<td>MD1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MD2</td>
</tr>
</tbody>
</table>

R3D1 stands for digit one of the third register and VDI stands for the first digit of the verb display, etc. For the right character of a pair, bit 5 is the MSB with bit 1 the LSB. For the left character of a pair, the MSB is bit 10 with bit 6 the LSB. Bit 11 of some of the DSPTABs contains discrete information, a one indicating that the discrete is on. For example, a one in bit 11 of DSPTAB+1 indicates that R3 has a plus sign. If the sign bits associated with a given register are both zeros, then the content of that particular register is octal; if either of the bits is set, the register content is decimal data.
The five bit codes associated with the digits are as follows:

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Blank</td>
<td>0</td>
</tr>
</tbody>
</table>

The following is a diagram of the DSKY face showing positions of the different digits:

```
<table>
<thead>
<tr>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verb</th>
</tr>
</thead>
<tbody>
<tr>
<td>VD1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Noun</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND1</td>
</tr>
</tbody>
</table>

Register 1

```
<table>
<thead>
<tr>
<th>±</th>
<th>R1D1</th>
<th>R1D2</th>
<th>R1D3</th>
<th>R1D4</th>
<th>R1D5</th>
</tr>
</thead>
</table>

Register 2

```
<table>
<thead>
<tr>
<th>±</th>
<th>R2D1</th>
<th>R2D2</th>
<th>R2D3</th>
<th>R2D4</th>
<th>R2D5</th>
</tr>
</thead>
</table>

Register 3

```
<table>
<thead>
<tr>
<th>±</th>
<th>R3D1</th>
<th>R3D2</th>
<th>R3D3</th>
<th>R3D4</th>
<th>R3D5</th>
</tr>
</thead>
</table>

2-66
DSPTAB+11D. This register drives relays for display lights. The bit assignments are:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>No Attitude</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Gimbal Lock</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Tracker</td>
</tr>
<tr>
<td>9</td>
<td>Program Caution</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

If bits 15 through 12 of DSPTAB+11D are 1000, the last 11 bits indicate the state to which the CMC will command the relays; if bits 15 through 12 are 0000, the last 11 bits indicate the actual state of the relays. A one indicates that the discrete is on.

TIME2, TIME1. A double precision word indicating ground elapsed time. Used for all timing while the CMC is on. Zeroed at liftoff and incremented by one bit per centisecond. It may be updated by Extended Verb 55 (R33) or by Extended Verb 73 (P27). Scaled centiseconds/2^{28}.

LM STATE VECTOR AND TIME. The CMC's latest calculated state vector for the LM in either earth-centered or moon-centered reference coordinates. A zero in bit 11 of flagword 8 (LMOONFLG) indicates earth-centered whereas a one indicates moon-centered. Words 52-54 contain the position coordinates, X, Y, and Z, scaled meters/2^{29}. Words 55-57 contain the velocity components, X, Y, and Z, scaled (meters/centisecond)/2^7. Word 58 contains the time associated with the LM state vector in words 52-57, scaled centiseconds/2^{28}. These parameters are calculated whenever the LM state vector is permanently extrapolated or changed, as follows:

- P00 - every 10 mins. to CM state vector time.
- P20 - every mark and every Incorp if LM connected.
- P27 - update of state vector
- R32 and V66.
(Temperate caution) of channel 11 is set to agree with this bit. Bit set 0 for a fresh start or restart.

14 Last sampled value of channel 30 bit 14 (0 if ISS has been turned on or commanded to be turned on). Bit set 1 for a fresh start or restart, thereby causing IMU CDU's to be zeroed.

13 Last sampled value of channel 30 bit 13 (0 if an IMU fail indication produced). Set 1 for a fresh start or restart; if bit becomes 0 while bit 4 of this word is also zero, then channel 11 bit 1 (ISS Warning) is set 1.

12 Last sampled value of channel 30 bit 12 (0 if an IMU CDU fail indication produced). Set 1 for a fresh start or restart; if bit becomes 0 while bit 3 of this word is also zero, then channel 11 bit 1 (ISS Warning) is set 1.

11 Last sampled value of channel 30 bit 11 (0 if an IMU cage command produced by crew). Set 1 for a fresh start or restart.

10 Last sampled value of channel 33 bit 13 (0 if a PIPA fail indication produced), having same value as bit 13 of IMODES33. Bit is set 1 for a fresh start or restart, and if an error reset key code is received via DSKY or uplink. If bit becomes 0 while bit 1 of this word is also zero, then channel 11 bit 1 (ISS Warning) is set 1.

9 Last sampled value of channel 30 bit 9 (0 if IMU turned on and operating with no malfunctions). Set 1 for a fresh start and set to 0 for restart. Alarm 02148 is generated if bit goes from 0 to 1 while bit 8 (IMUSE) of Flagword 0 is 1.

8 Bit used to control the IMU turn-on sequencing. It is set 1 if bit 7 of this word is sensed as 1, and is reset (with bit 7) to zero 0.48 secs later, before starting the IMU turn-on sequencing. Used to acheive a wait of 0.48 secs before acting on the IMU turn-on information. Set 0 by fresh start or restart.
CENTRAL ANGLE. The angle traversed by the passive vehicle between TPI time (TTPI) and intercept time (TPASS4), scaled degrees/360. This item can be computed by the TPI Search program or inputted via the DSKY and it is used in computing the time of flight (TPASS4-TTPI). It is calculated once during each pass through P17 (TPI Search).

OFFSET POINT. The desired distance between the CSM and LM measured along the orbit of the passive vehicle and scaled, meters/2^{29}. This quantity is never calculated but is always used as an input, via the DSKY, to the Stable Orbit program (P38/P78) and used in determining the target vector for Lambert.

TWO FLAGWORDS (10, 11). Bit assignments are as follows:

<table>
<thead>
<tr>
<th>Flagword</th>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>15</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>INTFLAG. A 1 indicates that some program or routine has called INTSTALL and is presumably in the process of integrating. Other programs calling INTSTALL will wait until this bit is reset to 0. A 0 indicates that no program or routine is currently using integration. Set 1 by INTSTALL. Set 0 by INTWAKE. A hardware or software restart sets this bit to 0.</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>REINTFLG. A 1 indicates that the routine currently using INTSTALL is to be restarted. A 0 indicates that no restartable integration is in progress. Programs which have restart points during integration set this bit to 1. INTWAKE sets this bit to 0. Bit is untouched by hardware and software restarts thus retaining INTSTALL for restartable programs.</td>
</tr>
<tr>
<td>Flagword</td>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Not used.</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Not used</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>Not used.</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Not used.</td>
</tr>
</tbody>
</table>

Word Number	Contents
78 | TEVENT. The time of liftoff (P11, clock zeroing) or time of any SPS ignition or shutdown (P40), whichever occurs last. It is scaled centiseconds/2^{28} and referenced to the computer clock. In P11, for the space of eight instructions (approx. 17 MCT), the 2 OCT value (7776400013) is stored in TLIFTOFF/TEVENT for P11 restart protection. The correct TIME2/TIME1 then overwrites the 2 OCT constant.
79 | Repeat of word 29 of this downlist.
OPTMODES, a cell whose individual bits are used to control the performance of optics functions within the "T4RUPT" package. Set to 00130\textsubscript{8} (bits 7, 5, 4 = 1) as part of a fresh start; a restart preserves the present values of the bits 9, 5, 4, while setting bit 7 to 1 and zeroing the remaining bits (15-10, 8, 6, 3-1). Word is updated once every 0.48 seconds, about 0.12 seconds before the interrupt that updates IMODES30 & IMODES33.

<table>
<thead>
<tr>
<th>Bits</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-11</td>
<td>Not assigned, hence expected to remain 0.</td>
</tr>
<tr>
<td>10</td>
<td>Bit set 1 to indicate that zeroing of optics completed since last fresh start or restart (both of which set the bit 0). If an attempt is made to drive the optics and this bit is found to be zero, alarm 0120\textsubscript{8} is generated (but computation proceeds).</td>
</tr>
<tr>
<td>9</td>
<td>Bit set 1 if optics switched from computer control mode (while being driven, i.e. "coarse aligned") to another mode. Value used when switch back to computer control mode to re-enable driving. Bit set 0 as part of fresh start and when optics system released (at end of marking); a restart preserves the bit (see, however, bit 10).</td>
</tr>
<tr>
<td>8</td>
<td>Not assigned, hence expected to remain 0.</td>
</tr>
<tr>
<td>7</td>
<td>Last sampled value of channel 30 bit 7 (0 if an optics CDU fail indication has been generated by the optics CDU hardware). If bit 2 of this word is 0, a Tracker alarm (bit 8 of DSPTAB+11) is generated if this bit has a 1 to 0 transition. Bit set 1 by a fresh start or restart.</td>
</tr>
<tr>
<td>6</td>
<td>Not assigned, hence expected to remain 0.</td>
</tr>
<tr>
<td>5</td>
<td>Last sampled value of channel 33 bit 5 (0 if optics mode switch set to computer control).</td>
</tr>
<tr>
<td>4</td>
<td>Last sampled value of channel 33 bit 4 (0 if optics mode switch set to zero optics). If bits 5-4 = 11\textsubscript{2}, this means that optics mode switch set to manual mode.</td>
</tr>
<tr>
<td>3</td>
<td>Bit set 1 when optics mode switch changed from manual or computer control mode to zero optics mode, to indicate that zeroing of the optics is in progress.</td>
</tr>
</tbody>
</table>
If bit 1 and bit 1 of this word is 0, then a switch out of zero optics mode will cause alarm 0116_8 to be generated (if switched to manual, a "grace period" of about 5.3 seconds is provided before the optics-zeroing time counter is reset, during which time a switch back to optics zeroing can be made). Bit remains 1 for about 16.2 seconds, and is then reset to 0 (at same time that bit 10 of this word is set 1, and bits 2-1 of this word set 0).

Bit set 1 to inhibit generation of Tracker alarm (bit 8 of DSPTAB+11) if bit 7 of this word goes from 1 to 0. Bit set 1 at the same time as bit 3, and reset 0 at end of wait (again at the same time as bit 3). This bit does **not** affect the setting of bit 8 of DSPTAB+11 due to excessive IMU CDU change after an optics mark (which also produces alarm 0121_8).

Bit set 1 to indicate that end of optics zeroing delay will occur in 0.4 seconds (remains 1 for that length of time, and then is reset to 0 at the same time as bits 3-2). If bit is 1, generation of alarm 0116_8 (see bit 3) is inhibited. Since updating of other bits (i.e., bit 5-4) of this word done only once every 0.48 seconds, this bit has negligible effect on program performance (since start of 0.4 second period is the same as one of the 0.48 second samples).

HOLDFLAG. A multiple purpose switch which is used for establishing the control reference of the autopilot. It has the following three states:

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) Sample the CDU angles and store in THETADX, THETADY, and THETADZ before resuming attitude hold and resetting HOLDFLAG to (+0).</td>
<td></td>
</tr>
<tr>
<td>(+0) Remain in attitude hold about previously established reference angles, THETADX, THETADY and THETADZ.</td>
<td></td>
</tr>
<tr>
<td>(-) Enable automatic steering.</td>
<td></td>
</tr>
</tbody>
</table>

LEMMASS. The current mass of the LM vehicle, scaled kilograms/2^{16}. This is a pad load erasable and is not changed in normal use. The astronaut can change it, however, as part of the normal DAPDATA LOAD (R03, V48).
CSMMASS. The current weight of the CSM vehicle, scaled kilograms/2^{16}. It is a pad load erasable which can be altered by the astronaut in R03 (V48). It is changed automatically every 10 seconds during TVC by TVEXECUTIVE. This change consists of decrementing the parameter by 290 kg. (638 lbs).

DAPDATR1, DAPDATR2. Information concerning the RCS-CSM DAP interfaces:

DAPDATR1 is packed with 5 octal digits of information as follows:

<table>
<thead>
<tr>
<th>Bits</th>
<th>15-13</th>
<th>12-10</th>
<th>9-7</th>
<th>6-4</th>
<th>3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONFIG</td>
<td>XTAC</td>
<td>XTBD</td>
<td>DB</td>
<td>RATE</td>
</tr>
</tbody>
</table>

(1) CONFIG: Configuration

0 No DAP or ENTRY DAP
1 CSM
2 CSM/LM
3 CSM/SIVB
6 CSM/LM ASCENT STAGE ONLY

(2) XTAC: X-translation using Quads AC

0 No AC
1 Use AC

(3) XTBD: X-translation using Quads BD

0 No BD
1 Use BD

(4) DB: Deadband

0 ± 0.5 degree
1 ± 5.0 degrees

(5) RATE: Response to RHC, Automatic maneuvers

0 0.05 degree/second
1 0.2 degree/second
2 0.5 degree/second
3 4.0 degrees/second

DAPDATR2 is packed with 5 octal digits of information as follows:

<table>
<thead>
<tr>
<th>Bits</th>
<th>15-13</th>
<th>12-10</th>
<th>9-7</th>
<th>6-4</th>
<th>3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC-Roll</td>
<td>Quad A</td>
<td>Quad B</td>
<td>Quad C</td>
<td>Quad D</td>
</tr>
</tbody>
</table>
(Cont.) 82

(1) AC-Roll: Roll jet selection
 0 Use BD Roll
 1 Use AC Roll

(2) A, B, C, D Quad fails
 0 Quad Failed
 1 Quad OK

83, 84a

ERRORX, ERRORY, ERRORZ. The RCS DAP phase plane (roll, pitch, yaw) attitude errors scaled degrees/180. During steady state operation the magnitude of ERRORX, Y, and Z should be less than the attitude deadband, ADB, (either 0.5 deg. or 5 deg.). When the CMC mode switch is in AUTO or HOLD, a magnitude greater than the ADB which exists for long intervals without diminishing at the rate as specified in DAPDATTR1 would be an indication of bad RCS DAP performance. The RCS control axes, with which these errors are concerned, are rotated, with respect to the body axes, by -7.25 degrees about the +X axis. The error values are calculated:

1. During RCS DAP operation with CMC MODE switch in AUTO or HOLD, every 100 millisecs.
2. During RCS DAP operation with CMC MODE switch in FREE - not updated.

84b

Garbage. THETAD, which is described in word 16a of the Powered Downlist will appear here.

85-87

WBODYs or OMEGACs (when TVC DAP is on). WBODYs are the desired angular body rates (roll, pitch, yaw) about the control axes when RCS DAP is on, scaled (degrees/second)/450. The RCS DAP control axes are rotated w.r.t. body axes by -7.25 degrees about +X. OMEGACs are body axis rate commands in roll, pitch and yaw generated by cross-product steering (Roll is ignored by TVC).

Bits 15 and 14 of Flagword 6, bits 15, 14 and 13 of DAPDATTR1, and bit 15 of Flagword 9 indicate which parameter is being sent and the correct scaling for OMEGAC.
<table>
<thead>
<tr>
<th>Contents</th>
<th>Bits 15, 14</th>
<th>Bits 15, 14, 13</th>
<th>Bit 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBODYS</td>
<td>01 XXX</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 001</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OMEGACS for CSM alone scaled (rev/sec)/12.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMEGAC: for preswitchover CSM/LM DAP, Scaled (rev/sec)/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\left(2^{\frac{1}{100}} \cdot (\text{ETVCDT/2})^1\right)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>where ETVCDT/2 is pad-loaded erasable integer (1/2 the sample interval in centiseconds)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 010</td>
<td>0</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMEGACS for postswitchover CSM/LM DAP, Scaled (rev/sec)/6.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

88a REDO COUNTER. Counter for hardware restarts. Set to zero by a keyboard fresh start (VERB 36). Incremented once per hardware restart by the restart program (GOPROG) and scaled 2^{-14}.

88b, 89 THETAD's. The final desired CDU angles, (X, Y, Z) treated as 15-bit unsigned quantities and scaled, degrees/360. THETAD+2 should not be in gimbal lock or near it. These items should not be confused with THETADX, Y, and Z.

90a IMODES30, a cell whose individual bits are used to control the monitoring of IMU functions associated with channel 30 (and in a few cases channel 33). Set to 374118 as part of a fresh start; a restart sets the word to 374008 plus the present contents of bits 5, 4, 3, 1 (zeroing bits 15, 8, 7, 6, and 2). Word is updated once every 0.48 seconds based upon the channel sampling controlled by the "T4RUPT" computations. Discussion below ignores settings performed by verb 35 ("lamp test").

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Last sampled value of channel 30 bit 15 (0 if IMU temperature within limits). If bit changes, bit 4</td>
</tr>
<tr>
<td>Word Number</td>
<td>Bit</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>(Cont.) 90a</td>
<td>15</td>
</tr>
<tr>
<td>(Cont.) 14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Bit used to control the IMU turn-on sequencing. It is set to 1 based on logic using bits 14, 9, and 2 of this word, and is reset to zero (with bit 8 of this word) 0.48 secs later. Also set 0 by a fresh start or restart. Hence can be set to 1 if ISS initialization requested (bit 14 or bit 9 of this word changing) since last fresh start, turn-off of IMU (change in bit 9 of this word), or turn-on delay complete (changing in bit 14 of this word).

Bit set 1 to indicate that IMU initialization is being carried out. Set 1 during turn-on sequence, if a cage command (bit 11 of this word) is received, or if IMU zeroing in "T4RUPT" is done (e.g. restart with IMU operating cf. bit 14 of this word). Set 0 by a fresh start or restart, about 10.24 seconds after removal of cage command, about 10.24 seconds after start of zeroing in "T4RUPT" (when bits 8-7 set 0), or about 94 seconds after start of turn-on sequence (when bits 8-7 set 0 marks the "start" of sequence). If bit is 1, no verb 37 input is processed (the two digits of the specified mode will be accepted, but then alarm pattern 1520₈ is generated). If bit is 1, an error exit from the internal IMU routines is forced (coarse align, fine align, or gyro torquing).

Bit set 1 to inhibit the generation of program alarm 0212₈ if a PIPA fail signal (bit 13 of channel 33) is produced. Set 0 as part of a fresh start, and value retained if a restart. Bit not used unless bit 1 of this word is 1. Bit set to 1 during IMU turn-on sequence (when bit 6 is set 1), and reset 0 about 10.24 seconds after bit 6 is reset 0 (alarm generated when Average-G is stopped, if bit 10 of this word is 0, regardless of the value of this bit 5).

Bit set 1 to inhibit generation of an ISS warning based on receipt of an IMU fail signal. Set 1 as part of a fresh start, and value retained if a restart. Bit reset to 0 when bit 6 is set 0 (having been set 1 when bit 6 set 1). Bit also set 1 when coarse align of IMU is started, and is set 0 about 5.12 seconds after mode change to fine align is done. Also set 1 for 10.24 seconds when IMU CDU zero commanded.
3 Bit set 1 to inhibit generation of an ISS warning based on receipt of an IMU CDU fail signal. Bit set 0 as part of a fresh start, and value retained if a restart. Bit set 1 when bit 6 of this word set 1, and is set 0 (at end of IMU zeroing sequence) when bit 6 set 0. Bit also set 1 (at the same time as bit 4) for 10.24 seconds when IMU CDU zero is commanded separate from "T4RUP7" package (via V40 N20E).

2 Bit set 1 to indicate failure of the turn-on delay sequence for IMU turn-on (alarm 02076 is also generated). Zeroed by fresh start or restart.

1 Bit set 1 to inhibit generation of an ISS warning based on receipt of a PIPA fail signal (bit 13 of channel 33). Bit set 1 as part of a fresh start, and value retained if a restart. Bit also set 1 when bit 6 of this word is set 1 (but is not subsequently reset in the "T4RUP7" logic, cf. bit 5 of this word).

IMODES33, a cell whose individual bits are used to control the monitoring of functions associated with channel 33 (and other items). Set to 1600008 as part of a fresh start; a restart sets it to 1600008 + the present contents of bit 6 (other bits set 0); and an error reset key code sets bits 13-11 to 1 (leaving other bits alone). Word is updated once every 0.48 seconds. Discussion below ignores settings performed by verb 35 ("lamp test") except for bit 1.

Bit Meaning
15 Not assigned, hence expected to remain 0.
14 Last sampled value of channel 32 bit 14 (0 if a Proceed command is given using the old "standby" button). A transition from 1 to 0 causes a job to be established that has same program logic effect as V33 E (from a mission program standpoint). Contrary to the other bits of this word, this bit is updated once every 0.12 seconds.
<table>
<thead>
<tr>
<th>Word Number</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cont.) 90b</td>
<td>Bit</td>
</tr>
<tr>
<td></td>
<td>13 Last sampled value of channel 33 bit 13 (0 if an accelerometer fail</td>
</tr>
<tr>
<td></td>
<td>signal, or PIPA fail, produced by hardware). Same quantity loaded into</td>
</tr>
<tr>
<td></td>
<td>bit 10 of IMODES30 (for program logic control convenience). Fresh</td>
</tr>
<tr>
<td></td>
<td>start and restart bit set to 1.</td>
</tr>
<tr>
<td></td>
<td>12 Last sampled value of channel 33 bit 12 (0 if a telemetry end pulse</td>
</tr>
<tr>
<td></td>
<td>rejected because downlink rate too fast). When a 1 to 0 transition</td>
</tr>
<tr>
<td></td>
<td>is sensed, alarm pattern 1105_8 is generated. Fresh start and restart</td>
</tr>
<tr>
<td></td>
<td>set bit to 1.</td>
</tr>
<tr>
<td></td>
<td>11 Last sampled value of channel 33 bit 11 (0 if an uplink bit</td>
</tr>
<tr>
<td></td>
<td>rejected because uplink rate too fast). When a 1 to 0 transition is</td>
</tr>
<tr>
<td></td>
<td>sensed, alarm pattern 1106_8 is generated. Fresh start and restart</td>
</tr>
<tr>
<td></td>
<td>sets bit to 1.</td>
</tr>
<tr>
<td></td>
<td>10-7 Not assigned, hence expected to remain 0.</td>
</tr>
<tr>
<td></td>
<td>6 Bit set to 1 to indicate that IMU use for vehicle attitude</td>
</tr>
<tr>
<td></td>
<td>information should not be attempted. Bit 1</td>
</tr>
<tr>
<td></td>
<td>the same time as bit 6 of IMODES30 is set1, and also when bit 4 of</td>
</tr>
<tr>
<td></td>
<td>IMODES30 is set1 (for IMU zeroing external to "T4RUPT" and for IMU</td>
</tr>
<tr>
<td></td>
<td>coarse align). Bit set 0 if IMU fine align routine is performed.</td>
</tr>
<tr>
<td></td>
<td>Set 1 if IMU turned off.</td>
</tr>
<tr>
<td></td>
<td>5 Bit set 1 in IMU zeroing routine external to "T4RUPT" while zeroing is</td>
</tr>
<tr>
<td></td>
<td>taking place (for an interval of about 10.24 seconds, at the same time</td>
</tr>
<tr>
<td></td>
<td>as bit 6 of this word is set in the routine). This routine is entered</td>
</tr>
<tr>
<td></td>
<td>via V40 N20E. Program comments indicate that bit used</td>
</tr>
<tr>
<td></td>
<td>"for ground" monitoring.</td>
</tr>
<tr>
<td></td>
<td>4-3 Not assigned, hence expected to remain 0.</td>
</tr>
<tr>
<td></td>
<td>2 Not assigned, hence expected to remain 0.</td>
</tr>
<tr>
<td></td>
<td>1 Bit set to 1 when a verb 35 ("lamp test") is received, and reset to</td>
</tr>
<tr>
<td></td>
<td>0 about 5 seconds later. Used to inhibit resetting of lights to 0 in</td>
</tr>
<tr>
<td></td>
<td>"T4RUPT" package while the lamp test is being performed.</td>
</tr>
<tr>
<td>Word Number</td>
<td>Contents</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>91-94</td>
<td>Channels 11, 12, 13, 14, 30, 31, 32, and 33. Bit assignments are as follows:</td>
</tr>
<tr>
<td></td>
<td>Word 91a, Channel 11. A computer output channel whose individual bits are used for display parameter quantities and engine on/off control. Set 0 by a fresh start. A restart or processing of a V37 program change causing the computer program number to be changed preserves the present value of bit 1 of the channel and sets remaining bits to 0. A restart then sets bit 13 to 1 if bit 7 of Flagword 5 = 1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-14</td>
<td>Not assigned.</td>
</tr>
<tr>
<td>13</td>
<td>SPS Engine on (set 1 in P40 to turn on SPS engine, set 0 to turn it off). Also set 0 if caging command received.</td>
</tr>
<tr>
<td>12-11</td>
<td>Not assigned.</td>
</tr>
<tr>
<td>10</td>
<td>Caution Reset signal (for display system lights). Set to 1 when an error reset key code (from uplink or DSKY) is received.</td>
</tr>
<tr>
<td>9</td>
<td>Test connector Outbit. Set 1 in accelerometer reading subroutine ("READACCS", entered about 2 seconds after Average-G is "started" and each two seconds thereafter until bit 1 of Flagword 1 = 0) and set 0 when Average-G is terminated (shortly after bit 6 of Flagword 7 is set 0).</td>
</tr>
<tr>
<td>8</td>
<td>Not assigned.</td>
</tr>
<tr>
<td>7</td>
<td>Operator error light. Set 0 when an error reset key code (from uplink or DSKY) is received; set 1 if various procedural items (most of which are related to the DSKY, such as illegal noun/verb combinations) are not performed properly.</td>
</tr>
<tr>
<td>6</td>
<td>Flash verb and noun lights. Bit is set when an operator action is required (by program means, as a clue to the operator that a response is needed). See discussion of Flagword 4.</td>
</tr>
<tr>
<td>5</td>
<td>Key Release light. Set 1 if program desires to use display system but external (DSKY or uplink) use of it is being made. Also would be set 1 if an internal or</td>
</tr>
</tbody>
</table>
externally initiated monitor display had been started and then some DSKY button was depressed. It is lit if a request for operator response has been initiated and crew does not respond directly to it, but instead displays something else. Set 0 by key release keyboard input, and upon other instances (such as processing of an extended verb) when display system is released by the internal program.

4 Temperature Caution light. Set bit 15 of IMODES30.

3 Uplink activity light. Set when an uplink interrupt is received; reset when an error reset key code is received, a key release key code, or at the termination of P27 (based on receipt of a proceed or terminate response).

2 Computer activity light. Set 0 if no active Jobs are to be performed. During P00 probably will be 0 except during the periodic state vector update or gyro drift compensation. Bit is not set 1 if a Task is performed, but instead left at its previous value.

1 ISS Warning light. See bits 13, 12, and 10 of IMODES30.

Word 91b, Channel 12. A computer output channel whose individual bits are used for control of optics/TVC and IMU hardware, and for control of the ISS. Set 0 by a fresh start. A restart or V37 processing causes bits 6-4 to be preserved at their present values, and sets remaining bits to 0. Caging command zeros bits 8, 6, 5, 4, and 2.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>ISS turn-on delay complete. Reset to 0 four seconds after being set 1 at end of 90 second ISS turn-on delay.</td>
</tr>
<tr>
<td>14</td>
<td>S4B Cutoff command. Not expected to be generated by programs used during flight.</td>
</tr>
<tr>
<td>13</td>
<td>S4B Injection Sequence Start. Not expected to be generated by programs used during flight.</td>
</tr>
<tr>
<td>12</td>
<td>Not assigned.</td>
</tr>
</tbody>
</table>
11 Disengage Optics Digital-to-Analog Converter. Not expected to be generated by programs used during flight (since optics zeroing is initiated only by crew optics switch selection.

10 Zero Optics. Not expected to be generated by programs used during flight.

9 S4B Takeover Enable. Set to 1 following a V46E with bits 14-13 of DAPDATR1 = 1 (for Saturn attitude control using RHC). Can be reset to 0 by V37E00E, or a restart (since "Saturn DAP" is not restart protected, cf. bits 15-14 of Flagword 6.

8 TVC Enable. Set to 1 in P40 shortly after the response to the checklist 02048 code, in order to connect the output of the "optics" CDU digital-to-analog converters to the SPS gimbal servo amplifiers. Bit set 0 about 2.5 seconds after engine cutoff command (bit 13 of channel 11 set 0) in the following cases: normal cutoff, a proceed response or a terminate response is provided to the V95N40 flash initiated at nominal ignition -5 seconds, a terminal response is provided to the V97N40 flash initiated by the thrust fail routine, R40.

7 Not assigned.

6 Enable IMU CDU error counters. Set 1 during coarse align of IMU, and in order to permit output of error information to the FDAI attitude error needles (bit is set 0 on initialization pass, then set 1; the third pass is the first one with output to needles).

5 Zero IMU CDU's. Set to 1 to permit IMU CDU's to be zeroed. This set at the same time as bit 4 of this word when bit 6 of IMODES30 is set 1 (IMU initialization), and is reset 0 about 4 seconds before bit 6 of IMODES30 is set 0. Also set 1 for about 0.32 seconds if a restart encountered with bit 8 of Flagword 0 = 0 (as it is during entry programs).
<table>
<thead>
<tr>
<th>Word Number (Cont)</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>91-94</td>
<td>Bit</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Word 92a, channel 13. A computer output channel whose outputs are used for miscellaneous purposes. Set 0 by a fresh start. A restart or V37 processing (cf. channel 11) causes bits 15-12 and 7-5 to be preserved at their present values, and sets remaining bits to 0.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Bit set 1 to permit an internal computer clock (TIME6) to be counted down at a 1600 pps rate. This clock is used for control of jet on-times in RCS DAP and the TVC roll DAP, but is not used for the entry DAP. When clock has counted down, bit is reset to 0, and the desired program interrupt action initiated.</td>
</tr>
<tr>
<td>14</td>
<td>Reset input trap circuit 32, concerned with bits 10-1 of channel 32.</td>
</tr>
<tr>
<td>13</td>
<td>Reset input trap circuit 31B, concerned with bits 12-7 of channel 31.</td>
</tr>
<tr>
<td>12</td>
<td>Reset input trap circuit 31A, concerned with bits 6-1 of channel 31.</td>
</tr>
</tbody>
</table>
Bit

Enable Standby. Bit set to 1 at the end of P06 (for an "enter" response to the checklist 000628 flash) in order to permit the "PRO" button (formerly "Standby button") to be effective in putting the computer into a period of low power operation. Bit is reset to 0 at the start of P05 if bit 11 of Flagword 5 = 1.

Test DSKY lights. Set 0 by an error reset keycode input; set 1 for about 5 seconds if a verb 35 input is received.

Not assigned.

Not used (assigned to "BMAG output enable").

Telemetry word order code bit. When channel is telemetered, should have a value of 1 (bit 0 only for words 1 and 51).

Block inputs to uplink cell. Not set by program.

Not used (connects an alternate input to uplink cell).

Range Unit activity.

Range Unit Select a.

Range Unit Select b.

Range Unit Select c.

Note: Bits 1 through 4 are assigned control functions for sampling of the VHF Range link to establish quantity fed to cell 00468 (RNRAK). These bits must contain the quantity, 10012, in order to obtain this control.

Word 92b, Channel 14. A computer output channel whose outputs are used for control of computer counter cells. Set 0 by a fresh start. A restart or V37 processing (cf. channel 11) causes bit 6 to be preserved at its present value, and sets remaining bits to 0. Caging command zeros bits 15-6.

Bit

Bit set to 1 to cause output pulses from cell used to drive X-axis IMU CDU error counter (IMU X-axis coarse align or error needle for roll axis). Bit reset to 0 after counter cell reduced to 0 (3200 pps); bit 6 of channel 12 must be set to load error counter.
<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Bit sensed as 0 if stable member temperature within design limits (see bit 15 of IMODES30).</td>
</tr>
<tr>
<td>14</td>
<td>Bit sensed as 0 if ISS has been turned on or commanded to be turned on (see bit 14 of IMODES30).</td>
</tr>
<tr>
<td>13</td>
<td>Same as bit 15, but for Z-axis (yaw).</td>
</tr>
<tr>
<td>12</td>
<td>Bit set to 1 to cause output pulses from cell used to drive optics trunnion or TVC yaw axis. Bit reset to 0 after counter cell reduced to 0 (3200 pps): bit 2 of channel 12 must be set to load error counter.</td>
</tr>
<tr>
<td>11</td>
<td>Same as bit 12, but for optics shaft or TVC pitch axis.</td>
</tr>
<tr>
<td>10</td>
<td>Bit set 1 to generate gyro torquing pulses, and reset to 0 when required number produced. Is set when pulse torquing of gyros performed (for IMU compensation or for pulse torquing in P52 or P54 following acceptance of V06N93 display).</td>
</tr>
<tr>
<td>9</td>
<td>Bit set 1 to indicate negative gyro torquing required (otherwise, torquing is positive). Bit reset to 0 after completion of routine.</td>
</tr>
<tr>
<td>8-7</td>
<td>Bits used to specify axis for gyro compensation (sequence is Y, Z, X for inner, middle, outer). Program resets to 00 when done.</td>
</tr>
<tr>
<td></td>
<td>00<sub>2</sub></td>
</tr>
<tr>
<td></td>
<td>01<sub>2</sub></td>
</tr>
<tr>
<td></td>
<td>10<sub>2</sub></td>
</tr>
<tr>
<td></td>
<td>11<sub>2</sub></td>
</tr>
<tr>
<td>6</td>
<td>Bit set 1 (at beginning of routine to generate gyro torquing pulses) to enable gyro torquing power supply, and left at 1 (unless a fresh start done or a caging command).</td>
</tr>
<tr>
<td>5</td>
<td>Not used (assigned to entry monitoring function).</td>
</tr>
<tr>
<td>4-2</td>
<td>Not assigned.</td>
</tr>
<tr>
<td>1</td>
<td>Not used (assigned to "outlink activity").</td>
</tr>
<tr>
<td>Word Number</td>
<td>Bit</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>(Cont.) 91-94</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Word 93b Channel 31. A computer input from crew control devices, used by RCS DAP.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Bit sensed as 0 if computer in control of spacecraft ("G&N autopilot control"). Bit also becomes a binary 1 if IMU turned off (hence, due to RCS DAP logic, minimum impulse commands cannot be generated with the IMU turned off).</td>
</tr>
<tr>
<td>Word Number (Cont.)</td>
<td>Bit</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
</tr>
<tr>
<td>91-94</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Word 94a, Channel 32. A computer input channel for additional crew input to RCS DAP, etc.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Not assigned.</td>
</tr>
<tr>
<td>14</td>
<td>Bit sensed as 0 if "proceed key" (formerly standby button) is depressed (see bit 14 of IMODES33).</td>
</tr>
<tr>
<td>13-12</td>
<td>Not assigned.</td>
</tr>
<tr>
<td>11</td>
<td>Bit sensed as 0 if spacecraft switch set to indicate that LM attached; bit not used by program (cf. bit 2 of Flagword 7).</td>
</tr>
<tr>
<td>10-7</td>
<td>Not assigned.</td>
</tr>
<tr>
<td>Bit</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>6</td>
<td>Bit sensed as 0 if negative roll commanded by minimum impulse controller.</td>
</tr>
<tr>
<td>5</td>
<td>Bit sensed as 0 if positive roll commanded by minimum impulse controller.</td>
</tr>
<tr>
<td>4</td>
<td>Bit sensed as 0 if negative yaw commanded by minimum impulse controller.</td>
</tr>
<tr>
<td>3</td>
<td>Bit sensed as 0 if positive yaw commanded by minimum impulse controller.</td>
</tr>
<tr>
<td>2</td>
<td>Bit sensed as 0 if negative pitch commanded by minimum impulse controller.</td>
</tr>
<tr>
<td>1</td>
<td>Bit sensed as 0 if positive pitch commanded by minimum impulse controller.</td>
</tr>
</tbody>
</table>

Word 94b, Channel 33. A computer input channel for hardware status and command information. Bits 15-11 are flip-flop bits (which are reset by a channel "write" command) that are also reset when a restart is encountered.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Bit sensed as 0 if computer oscillator has stopped (sensed, but with no effect on subsequent program performance, if a restart encountered).</td>
</tr>
<tr>
<td>14</td>
<td>Bit sensed as 0 if a computer warning produced (sensed, but with no effect on subsequent program performance, if a restart encountered; formerly, if bits 15-14 = 10₂, it was concluded that a restart loop existed and a fresh start was done: a fresh start can still be forced under this situation by simultaneous depression of optics mark reject and error reset signal (either DSKY).</td>
</tr>
<tr>
<td>13</td>
<td>Bit sensed as 0 if an accelerometer fail indication produced (PIPA fail). See bit 13 of IMODES33.</td>
</tr>
<tr>
<td>12</td>
<td>Bit sensed as 0 if a telemetry end pulse rejected (downlink interrupt rate excessive). See bit 12 of IMODES33.</td>
</tr>
<tr>
<td>11</td>
<td>Bit sensed as 0 if an uplink input bit is rejected, indicating an excessive uplink rate. See bit 11 of IMODES33.</td>
</tr>
</tbody>
</table>
Bit sensed as 0 if spacecraft switches set by crew so as to inhibit uplink inputs from being loaded into erasable memory (an subsequently generating an uplink interrupt). The bit reads a binary 1 when the "accept uplink" signal is present at the interface.

9-8 Not assigned.
7 Not used (assigned to "star present").
6 Not used (assigned to "star tracker on").
5 Bit sensed as 0 if computer control of optics is set. See bit 5 of OPTMODES.
4 Bit sensed as 0 if zero optics mode is set. See bit 4 of OPTMODES. If bits 5-4 are both 1, the manual mode is selected.
3 Not assigned.
2 Bit sensed as zero if the Range Unit data is good.
1 Not assigned.

95-97 VGTIGs. The predicted velocity (X, Y, Z) to be gained at TIG in reference coordinates, scaled (meter/centiseconds)/27. During Lambert burns, the DELVEET3s from pre-thrust targeting are picked up and stored in VGTIG. External ΔV burns compute and store a rotated VG. It is calculated in burn programs: S40.1 computes (X-DELV) or copies (LAMBERT) as part of pre-thrust computations.

98-100 Spares, as defined in words 31-33 of this downlist.
<table>
<thead>
<tr>
<th>Word Number</th>
<th>First Register</th>
<th>Second Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I. D. (77777₈)</td>
<td>Synch Bits (77340₀)</td>
</tr>
<tr>
<td>2</td>
<td>CSM State Vector (Rₓ)</td>
<td>CSM State Vector (Rₓ)</td>
</tr>
<tr>
<td>3</td>
<td>CSM State Vector (Rᵧ)</td>
<td>CSM State Vector (Rᵧ)</td>
</tr>
<tr>
<td>4</td>
<td>CSM State Vector (Rₗ)</td>
<td>CSM State Vector (Rₗ)</td>
</tr>
<tr>
<td>5</td>
<td>CSM State Vector (Vₓ)</td>
<td>CSM State Vector (Vₓ)</td>
</tr>
<tr>
<td>6</td>
<td>CSM State Vector (Vᵧ)</td>
<td>CSM State Vector (Vᵧ)</td>
</tr>
<tr>
<td>7</td>
<td>CSM State Vector (Vₗ)</td>
<td>CSM State Vector (Vₗ)</td>
</tr>
<tr>
<td>8</td>
<td>CSM State Vector Time</td>
<td>CSM State Vector Time</td>
</tr>
<tr>
<td>9</td>
<td>Actual X CDU angle</td>
<td>Actual Y CDU angle</td>
</tr>
<tr>
<td>10</td>
<td>Actual Z CDU angle</td>
<td>Optics CDU trunnion angle</td>
</tr>
<tr>
<td>11</td>
<td>ADOTS roll or OGARATE</td>
<td>ADOTS roll or OGARATE</td>
</tr>
<tr>
<td>12</td>
<td>ADOTS pitch or Omega B pitch</td>
<td>ADOTS pitch or Omega B pitch</td>
</tr>
<tr>
<td>13</td>
<td>ADOTS yaw or Omega B yaw</td>
<td>ADOTS yaw or Omega B yaw</td>
</tr>
<tr>
<td>14</td>
<td>X Attitude error</td>
<td>Y attitude error</td>
</tr>
<tr>
<td>15</td>
<td>Z attitude error</td>
<td>RCS flags</td>
</tr>
<tr>
<td>16</td>
<td>THETADX</td>
<td>THETADY</td>
</tr>
<tr>
<td>17</td>
<td>THETADZ</td>
<td>Garbage</td>
</tr>
<tr>
<td>18</td>
<td>TIG</td>
<td>TIG</td>
</tr>
<tr>
<td>19</td>
<td>STARID1</td>
<td>STARID2</td>
</tr>
<tr>
<td>20</td>
<td>MARKTIME1</td>
<td>MARKTIME1</td>
</tr>
<tr>
<td>21</td>
<td>Y CDU angle</td>
<td>Optics shaft angle</td>
</tr>
<tr>
<td>22</td>
<td>Z CDU angle</td>
<td>Optics trunnion angle</td>
</tr>
<tr>
<td>23</td>
<td>X CDU angle</td>
<td>Garbage</td>
</tr>
<tr>
<td>24</td>
<td>MARKTIME2</td>
<td>MARKTIME2</td>
</tr>
<tr>
<td>25</td>
<td>Y CDU angle</td>
<td>Optics Shaft angle</td>
</tr>
<tr>
<td>26</td>
<td>Z CDU angle</td>
<td>Optics trunnion angle</td>
</tr>
<tr>
<td>27</td>
<td>X CDU angle</td>
<td>Garbage</td>
</tr>
<tr>
<td>28</td>
<td>Apogee</td>
<td>Apogee</td>
</tr>
<tr>
<td>29</td>
<td>Perigee</td>
<td>Perigee</td>
</tr>
<tr>
<td>30</td>
<td>Delta R</td>
<td>Delta R</td>
</tr>
<tr>
<td>31</td>
<td>VGTIGX</td>
<td>VGTIGX</td>
</tr>
<tr>
<td>32</td>
<td>VGTIGY</td>
<td>VGTIGY</td>
</tr>
<tr>
<td>33</td>
<td>VGTIGZ</td>
<td>VGTIGZ</td>
</tr>
<tr>
<td>34</td>
<td>REFSMMAT (R₁C₁)</td>
<td>REFSMMAT (R₁C₁)</td>
</tr>
<tr>
<td>35</td>
<td>REFSMMAT (R₁C₂)</td>
<td>REFSMMAT (R₁C₂)</td>
</tr>
<tr>
<td>36</td>
<td>REFSMMAT (R₁C₃)</td>
<td>REFSMMAT (R₁C₃)</td>
</tr>
<tr>
<td>Word Number</td>
<td>First Register</td>
<td>Second Register</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>37</td>
<td>REFSMMAT (R₂C₁)</td>
<td>REFSMMAT (R₂C₁)</td>
</tr>
<tr>
<td>38</td>
<td>REFSMMAT (R₂C₂)</td>
<td>REFSMMAT (R₂C₂)</td>
</tr>
<tr>
<td>39</td>
<td>REFSMMAT (R₂C₃)</td>
<td>REFSMMAT (R₂C₃)</td>
</tr>
<tr>
<td>40</td>
<td>Flagword 0</td>
<td>Flagword 1</td>
</tr>
<tr>
<td>41</td>
<td>Flagword 2</td>
<td>Flagword 3</td>
</tr>
<tr>
<td>42</td>
<td>Flagword 4</td>
<td>Flagword 5</td>
</tr>
<tr>
<td>43</td>
<td>Flagword 6</td>
<td>Flagword 7</td>
</tr>
<tr>
<td>44</td>
<td>Flagword 8</td>
<td>Flagword 9</td>
</tr>
<tr>
<td>45</td>
<td>DSPTAB+0</td>
<td>DSPTAB+1</td>
</tr>
<tr>
<td>46</td>
<td>DSPTAB+2</td>
<td>DSPTAB+3</td>
</tr>
<tr>
<td>47</td>
<td>DSPTAB+4</td>
<td>DSPTAB+5</td>
</tr>
<tr>
<td>48</td>
<td>DSPTAB+6</td>
<td>DSPTAB+7</td>
</tr>
<tr>
<td>49</td>
<td>DSPTAB+8D</td>
<td>DSPTAB+9D</td>
</tr>
<tr>
<td>50</td>
<td>DSPTAB+10D</td>
<td>DSPTAB+11D</td>
</tr>
<tr>
<td>51</td>
<td>TIME 2</td>
<td>TIME 1</td>
</tr>
<tr>
<td>52</td>
<td>LM State Vector (Rₓ)</td>
<td>LM State Vector (Rₓ)</td>
</tr>
<tr>
<td>53</td>
<td>LM State Vector (Rᵧ)</td>
<td>LM State Vector (Rᵧ)</td>
</tr>
<tr>
<td>54</td>
<td>LM State Vector (R₂)</td>
<td>LM State Vector (R₂)</td>
</tr>
<tr>
<td>55</td>
<td>LM State Vector (Vₓ)</td>
<td>LM State Vector (Vₓ)</td>
</tr>
<tr>
<td>56</td>
<td>LM State Vector (Vᵧ)</td>
<td>LM State Vector (Vᵧ)</td>
</tr>
<tr>
<td>57</td>
<td>LM State Vector (V₂)</td>
<td>LM State Vector (V₂)</td>
</tr>
<tr>
<td>58</td>
<td>LM State Vector Time</td>
<td>LM State Vector Time</td>
</tr>
<tr>
<td>59</td>
<td>Actual X CDU angle</td>
<td>Actual Y CDU angle</td>
</tr>
<tr>
<td>60</td>
<td>Actual Z CDU angle</td>
<td>Optics CDU trunnion angle</td>
</tr>
<tr>
<td>61</td>
<td>ADOTS roll or OGRATE</td>
<td>ADOTS roll or OGRATE</td>
</tr>
<tr>
<td>62</td>
<td>ADOTS pitch or Omega B pitch</td>
<td>ADOTS pitch or Omega B pitch</td>
</tr>
<tr>
<td>63</td>
<td>ADOTS yaw or Omega B yaw</td>
<td>ADOTS yaw or Omega B yaw</td>
</tr>
<tr>
<td>64</td>
<td>X attitude error</td>
<td>Y attitude error</td>
</tr>
<tr>
<td>65</td>
<td>Z attitude error</td>
<td>RCS flags</td>
</tr>
<tr>
<td>66</td>
<td>THETADX</td>
<td>THETADY</td>
</tr>
<tr>
<td>67</td>
<td>THETADZ</td>
<td>Garbage</td>
</tr>
<tr>
<td>68</td>
<td>* RSBBQ</td>
<td>RSBBQ+1</td>
</tr>
<tr>
<td>69</td>
<td>* CADRFLSH</td>
<td>CADRFLSH+1</td>
</tr>
<tr>
<td>70</td>
<td>* CADRFLSH+2</td>
<td>FAILREG</td>
</tr>
<tr>
<td>71</td>
<td>* FAILREG+1</td>
<td>FAILREG+2</td>
</tr>
<tr>
<td>72</td>
<td>Optics shaft</td>
<td>PIPAX</td>
</tr>
<tr>
<td>73</td>
<td>PIPAY</td>
<td>PIPAZ</td>
</tr>
</tbody>
</table>

* Indicates two single precision quantities that are not indicated otherwise.
<table>
<thead>
<tr>
<th>Word Number</th>
<th>First Register</th>
<th>Second Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>OGC</td>
<td>OGC</td>
</tr>
<tr>
<td>75</td>
<td>IGC</td>
<td>IGC</td>
</tr>
<tr>
<td>76</td>
<td>MGC</td>
<td>MGC</td>
</tr>
<tr>
<td>77</td>
<td>Flagword 10</td>
<td>Flagword 11</td>
</tr>
<tr>
<td>78</td>
<td>TEVENT</td>
<td>TEVENT</td>
</tr>
<tr>
<td>79</td>
<td>LAUNCH AZIMUTH</td>
<td>LAUNCH AZIMUTH</td>
</tr>
<tr>
<td>80</td>
<td>OPTMODES</td>
<td>HOLDFLAG</td>
</tr>
<tr>
<td>81</td>
<td>LM MASS</td>
<td>CM MASS</td>
</tr>
<tr>
<td>82</td>
<td>DAPDATR1</td>
<td>DAPDATR2</td>
</tr>
<tr>
<td>83</td>
<td>ERROR X</td>
<td>ERROR Y</td>
</tr>
<tr>
<td>84</td>
<td>ERROR Z</td>
<td>Garbage (THETADX)</td>
</tr>
<tr>
<td>85</td>
<td>WBODY (roll) or OMEGAC (roll)</td>
<td>WBODY (roll) or OMEGAC (roll)</td>
</tr>
<tr>
<td>86</td>
<td>WBODY (pitch) or OMEGAC (pitch)</td>
<td>WBODY (pitch) or OMEGAC (pitch)</td>
</tr>
<tr>
<td>87</td>
<td>WBODY (yaw) or OMEGAC (yaw)</td>
<td>WBODY (yaw) or OMEGAC (yaw)</td>
</tr>
<tr>
<td>88</td>
<td>REDO COUNTER</td>
<td>Desired FINAL CDU X</td>
</tr>
<tr>
<td>89</td>
<td>Desired FINAL CDU Y</td>
<td>Desired FINAL CDU Z</td>
</tr>
<tr>
<td>90</td>
<td>IMODES 30</td>
<td>IMODES 33</td>
</tr>
<tr>
<td>91</td>
<td>Channel 11</td>
<td>Channel 12</td>
</tr>
<tr>
<td>92</td>
<td>Channel 13</td>
<td>Channel 14</td>
</tr>
<tr>
<td>93</td>
<td>Channel 30</td>
<td>Channel 31</td>
</tr>
<tr>
<td>94</td>
<td>Channel 32</td>
<td>Channel 33</td>
</tr>
<tr>
<td>95</td>
<td>DSPTAB+0</td>
<td>DSPTAB+1</td>
</tr>
<tr>
<td>96</td>
<td>DSPTAB+2</td>
<td>DSPTAB+3</td>
</tr>
<tr>
<td>97</td>
<td>DSPTAB+4</td>
<td>DSPTAB+5</td>
</tr>
<tr>
<td>98</td>
<td>DSPTAB+6</td>
<td>DSPTAB+7</td>
</tr>
<tr>
<td>99</td>
<td>DSPTAB+8D</td>
<td>DSPTAB+9D</td>
</tr>
<tr>
<td>100</td>
<td>DSPTAB+10D</td>
<td>DSPTAB+11D</td>
</tr>
</tbody>
</table>
2.2.2.4 Coast and Align List

<table>
<thead>
<tr>
<th>Word Number</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>I.D. word for this list. It will contain 777778.</td>
</tr>
<tr>
<td>1b</td>
<td>Synch bits, 773408.</td>
</tr>
<tr>
<td>2-18</td>
<td>Same as words 2-18 on the Powered List.</td>
</tr>
<tr>
<td>19</td>
<td>STAR ID1, 2. The star I.D.'s associated with the sighting vectors in words 21-23 and 25-27. Each star I.D. will be the octal equivalent of the CMC star catalogue number multiplied by six. Each register is scaled ((\text{star number} \times 6)/2^{14}). Example:</td>
</tr>
<tr>
<td></td>
<td>Star</td>
</tr>
<tr>
<td></td>
<td>Alpha Tauri</td>
</tr>
<tr>
<td></td>
<td>BESTI and BESTJ are calculated during PICAPAR and after the astronaut changes the star number.</td>
</tr>
<tr>
<td>20</td>
<td>MARKTIME1. The time of the mark ((\text{TIME2, TIME1})) associated with the data described in words 21-23a, scaled centiseconds/2^{28}.</td>
</tr>
<tr>
<td>21-23a</td>
<td>SIGHTING DATA SET1. These five registers contain, in the following order: YCDU angle, optics shaft angle, ZCDU angle, optics trunnion angle and XCDU angle. This data is valid at MARKTIME1 and is associated with the star indexed by BESTI (word 19a). XCDU, YCDU, ZCDU and the optics shaft angle are treated as unsigned 15-bit fractions, scaled degrees/360. The optics trunnion angle is scaled ((\text{degrees-19.7754})/45). The bias, 19.7754 is programmed-in.</td>
</tr>
<tr>
<td>23b</td>
<td>Garbage. Same as word 30b of the Powered downlist.</td>
</tr>
<tr>
<td>24</td>
<td>MARKTIME2. The time of the mark ((\text{TIME2, TIME1})) associated with the data described in words 25-27a, scaled centiseconds/2^{28}.</td>
</tr>
<tr>
<td>25-27a</td>
<td>SIGHTING DATA SET 2. Same as words 21-23a of this list except that this set is associated with MARKTIME2 and Star ID2 indexed by BESTJ (word 19b).</td>
</tr>
<tr>
<td>27b</td>
<td>Garbage. The Z component of the third BVECTOR can appear here. In P20 and P23 this register is set to zero. During P22 it is set to the negative value of the first component of the BVECTOR.</td>
</tr>
</tbody>
</table>
APOGEE. The altitude of the apogee above a fixed radius, scaled meters/2^{29}. For Earth Orbit it is calculated above the launch pad radius and for Moon Orbit it is computed above the landing-site radius. If Flagword 9, bit 13 (V82EMFLG), is a one, the radius is Moon-centered. A zero in this bit position will indicate an Earth-centered radius. R30 obtains the state vector from precision routines with an indication of the coordinate system. V82EMFLG is then set accordingly. This item is calculated and displayed (V82N44) once if Average G is off and approximately every ten seconds if Average G is on. The maximum value is 9999.9 nmi.

PERIGEE. The altitude of the perigee above a fixed radius, scaled meters/2^{29}. For Earth Orbit it is calculated above the launch pad radius and for Moon Orbit it is computed above the landing-site radius. If Flagword 9, bit 13 (V28EMFLG), is a one, the radius is Moon-centered. A zero in this bit position will indicate an Earth-centered radius. R30 obtains the state vector from precision routines with an indication of the coordinate system. V82EMFLG is then set accordingly. This item is calculated and displayed (V82N44) once if Average G is off and approximately every ten seconds if Average G is on. The maximum value is 9999.9 nmi.

DELTA R. An approximate measure of the in-plane splash-down error, scaled degrees/360. If the free-fall transfer angle to 300,000 feet above the pad radius is positive, the splash error = free-fall transfer angle + estimated entry angle - range to target. The target location at estimated time of impact is used. If the free-fall transfer angle is negative, the splash error = - range to target. The present target location is used. This parameter is called by V82 if in CSM and if P11 is operating (every 2 seconds).

Same as words 95-97 of the Powered List.

Same as words 34-73 of the Powered List.

OGC, IGC, MGC. During R55, the X, Y, and Z gyro torquing angles. During coarse align, in P52 and P54, the desired gimbal angles (outer, inner & middle), scaled degrees/360.

Same as word 77 of the Powered List.

Same as word 78 of the Powered List.
<table>
<thead>
<tr>
<th>Word Number</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>LAUNCHAZ: The clockwise angle from true north to the IMU stable member X axis, measured in the local horizontal plane and scaled degrees/360. The expected angles will range from $+72^\circ$ to $+108^\circ$ (approx.). The item is pad loaded and may be re-loaded during P02, gyrocompassing program, via Verb 78E.</td>
</tr>
<tr>
<td>80-94</td>
<td>Same as words 80-94 of the Powered List.</td>
</tr>
<tr>
<td>95-100</td>
<td>Same as words 45-50 of the Powered List.</td>
</tr>
<tr>
<td>Word Number</td>
<td>First Register</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>I.D. ((77775_g))</td>
</tr>
<tr>
<td>2</td>
<td>CSM State Vector ((R_X))</td>
</tr>
<tr>
<td>3</td>
<td>CSM State Vector ((R_Y))</td>
</tr>
<tr>
<td>4</td>
<td>CSM State Vector ((R_Z))</td>
</tr>
<tr>
<td>5</td>
<td>CSM State Vector ((V_X))</td>
</tr>
<tr>
<td>6</td>
<td>CSM State Vector ((V_Y))</td>
</tr>
<tr>
<td>7</td>
<td>CSM State Vector ((V_Z))</td>
</tr>
<tr>
<td>8</td>
<td>CSM State Vector Time</td>
</tr>
<tr>
<td>9</td>
<td>Actual X CDU angle</td>
</tr>
<tr>
<td>10</td>
<td>Actual Z CDU angle</td>
</tr>
<tr>
<td>11</td>
<td>ADOTS roll or OGARATE</td>
</tr>
<tr>
<td>12</td>
<td>ADOTS pitch or Omega B pitch</td>
</tr>
<tr>
<td>13</td>
<td>ADOTS yaw or Omega B yaw</td>
</tr>
<tr>
<td>14</td>
<td>X attitude error</td>
</tr>
<tr>
<td>15</td>
<td>Z attitude error</td>
</tr>
<tr>
<td>16</td>
<td>THETADX</td>
</tr>
<tr>
<td>17</td>
<td>THETADZ</td>
</tr>
<tr>
<td>18</td>
<td>TIG</td>
</tr>
<tr>
<td>19</td>
<td>(T_F) Lambert</td>
</tr>
<tr>
<td>20</td>
<td>RTARGX</td>
</tr>
<tr>
<td>21</td>
<td>RTARY</td>
</tr>
<tr>
<td>22</td>
<td>RTARGZ</td>
</tr>
<tr>
<td>23</td>
<td>VHF TIME</td>
</tr>
<tr>
<td>24</td>
<td>MARK TIME</td>
</tr>
<tr>
<td>25</td>
<td>Y CDU angle</td>
</tr>
<tr>
<td>26</td>
<td>Z CDU angle</td>
</tr>
<tr>
<td>27</td>
<td>X CDU angle</td>
</tr>
<tr>
<td>28</td>
<td>VHF MARKS</td>
</tr>
<tr>
<td>29</td>
<td>TPI TIME</td>
</tr>
<tr>
<td>30</td>
<td>ECSTEER</td>
</tr>
<tr>
<td>31</td>
<td>DELVTPF (Magnitude)</td>
</tr>
<tr>
<td>32</td>
<td>Spare</td>
</tr>
<tr>
<td>33</td>
<td>Spare</td>
</tr>
<tr>
<td>34</td>
<td>TPF Time</td>
</tr>
<tr>
<td>35</td>
<td>DELVSLV X</td>
</tr>
<tr>
<td>36</td>
<td>DELVSLV Y</td>
</tr>
<tr>
<td>37</td>
<td>DELVSLV Z</td>
</tr>
<tr>
<td>Word Number</td>
<td>First Register</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>38</td>
<td>Range</td>
</tr>
<tr>
<td>39</td>
<td>Range Rate</td>
</tr>
<tr>
<td>40</td>
<td>Flagword 0</td>
</tr>
<tr>
<td>41</td>
<td>Flagword 2</td>
</tr>
<tr>
<td>42</td>
<td>Flagword 4</td>
</tr>
<tr>
<td>43</td>
<td>Flagword 6</td>
</tr>
<tr>
<td>44</td>
<td>Flagword 8</td>
</tr>
<tr>
<td>45</td>
<td>DSPTAB+0</td>
</tr>
<tr>
<td>46</td>
<td>DSPTAB+2</td>
</tr>
<tr>
<td>47</td>
<td>DSPTAB+4</td>
</tr>
<tr>
<td>48</td>
<td>DSPTAB+6</td>
</tr>
<tr>
<td>49</td>
<td>DSPTAB+8D</td>
</tr>
<tr>
<td>50</td>
<td>DSPTAB+10D</td>
</tr>
<tr>
<td>51</td>
<td>TIME 2</td>
</tr>
<tr>
<td>52</td>
<td>LM State Vector (R_X)</td>
</tr>
<tr>
<td>53</td>
<td>LM State Vector (R_Y)</td>
</tr>
<tr>
<td>54</td>
<td>LM State Vector (R_Z)</td>
</tr>
<tr>
<td>55</td>
<td>LM State Vector (V_X)</td>
</tr>
<tr>
<td>56</td>
<td>LM State Vector (V_Y)</td>
</tr>
<tr>
<td>57</td>
<td>LM State Vector (V_Z)</td>
</tr>
<tr>
<td>58</td>
<td>LM State Vector Time</td>
</tr>
<tr>
<td>59</td>
<td>Actual X CDU angle</td>
</tr>
<tr>
<td>60</td>
<td>Actual Z CDU angle</td>
</tr>
<tr>
<td>61</td>
<td>ADOTS roll or OGARATE</td>
</tr>
<tr>
<td>62</td>
<td>ADOTS pitch or Omega B pitch</td>
</tr>
<tr>
<td>63</td>
<td>ADOTS yaw or Omega B yaw</td>
</tr>
<tr>
<td>64</td>
<td>X attitude error</td>
</tr>
<tr>
<td>65</td>
<td>Z attitude error</td>
</tr>
<tr>
<td>66</td>
<td>THETADX</td>
</tr>
<tr>
<td>67</td>
<td>THETADZ</td>
</tr>
<tr>
<td>68</td>
<td>* RSBBQ</td>
</tr>
<tr>
<td>69</td>
<td>* CADRFLSH</td>
</tr>
<tr>
<td>70</td>
<td>* CADRFLSH+2</td>
</tr>
<tr>
<td>71</td>
<td>* FAILREG+1</td>
</tr>
<tr>
<td>72</td>
<td>Optics shaft</td>
</tr>
<tr>
<td>73</td>
<td>PIPAY</td>
</tr>
<tr>
<td>74</td>
<td>Elevation angle</td>
</tr>
<tr>
<td>75</td>
<td>Central Angle</td>
</tr>
</tbody>
</table>

* Indicates two single precision quantities that are not indicated otherwise.
<table>
<thead>
<tr>
<th>Word Number</th>
<th>First Register</th>
<th>Second Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>Offset Point</td>
<td>Offset Point</td>
</tr>
<tr>
<td>77</td>
<td>DELVEET3 X</td>
<td>DELVEET3 X</td>
</tr>
<tr>
<td>78</td>
<td>DELVEET3 Y</td>
<td>DELVEET3 Y</td>
</tr>
<tr>
<td>79</td>
<td>DELVEET3 Z</td>
<td>DELVEET3 Z</td>
</tr>
<tr>
<td>80</td>
<td>OPTMODES</td>
<td>HOLDFLAG</td>
</tr>
<tr>
<td>81</td>
<td>LM MASS</td>
<td>CM MASS</td>
</tr>
<tr>
<td>82</td>
<td>DAPDATR1</td>
<td>DAPDATR2</td>
</tr>
<tr>
<td>83</td>
<td>ERROR X</td>
<td>ERROR Y</td>
</tr>
<tr>
<td>84</td>
<td>ERROR Z</td>
<td>Garbage (THETADX)</td>
</tr>
<tr>
<td>85</td>
<td>WBODY (roll) or OMEGAC (roll)</td>
<td>WBODY (roll) or OMEGAC (roll)</td>
</tr>
<tr>
<td>86</td>
<td>WBODY (pitch) or OMEGAC (pitch)</td>
<td>WBODY (pitch) or OMEGAC (pitch)</td>
</tr>
<tr>
<td>87</td>
<td>WBODY (yaw) or OMEGAC (yaw)</td>
<td>WBODY (yaw) or OMEGAC (yaw)</td>
</tr>
<tr>
<td>88</td>
<td>REDO COUNTER</td>
<td>Desired FINAL CDU X</td>
</tr>
<tr>
<td>89</td>
<td>Desired FINAL CDU Y</td>
<td>Desired FINAL CDU Z</td>
</tr>
<tr>
<td>90</td>
<td>IMODES 30</td>
<td>IMODES 33</td>
</tr>
<tr>
<td>91</td>
<td>Channel 11</td>
<td>Channel 12</td>
</tr>
<tr>
<td>92</td>
<td>Channel 13</td>
<td>Channel 14</td>
</tr>
<tr>
<td>93</td>
<td>Channel 30</td>
<td>Channel 31</td>
</tr>
<tr>
<td>94</td>
<td>Channel 32</td>
<td>Channel 33</td>
</tr>
<tr>
<td>95</td>
<td>RTHETA</td>
<td>RTHETA</td>
</tr>
<tr>
<td>96</td>
<td>GEODETIC LAT</td>
<td>GEODETIC LAT</td>
</tr>
<tr>
<td>97</td>
<td>LONG</td>
<td>LONG</td>
</tr>
<tr>
<td>98</td>
<td>V PRED</td>
<td>V PRED</td>
</tr>
<tr>
<td>99</td>
<td>GAMMA(E1)</td>
<td>GAMMA(E1)</td>
</tr>
<tr>
<td>100</td>
<td>Flagword 10</td>
<td>Flagword 11</td>
</tr>
</tbody>
</table>
2.2.2.6 Rendezvous and Prethrust List

Word Number	Contents
1a | I.D. word for this list. It will contain 7777_8.
1b | Synch bits, 77340_8.
2-22 | Same as words 2-22 on Powered List.
23 | VHF TIME. The time (TIME2, TIME1) of the last VHF Range mark, scaled centiseconds/2^{28}. This item is calculated each time the VHF Range is read. It is also used to determine if one minute has elapsed since the last mark was processed and to integrate the state vector to the mark-time.
24 | OPTICS MARKTIME. The time of mark (TIME2, TIME1) associated with the data described in words 25-27a, scaled centiseconds/2^{28}.
25-27a | SIGHTING DATA. These five registers contain, in the following order: YCDU angle, optics shaft angle, ZCDU angle, optics trunnion angle and XCDU angle. This data is valid at the time an optics mark is taken on the LM vehicle during rendezvous tracking (P20). XCDU, YCDU, ZCDU and optics shaft angle are unsigned 15-bit fractions, scaled degrees/360. The trunnion angle is a 14-bit signed fraction scaled, (degrees -19,7754)/45 (two's complement). The bias, 19,7754, is programmed-in.
27b | VHF RANGE. (Raw Data). The range from the CSM to the LM as measured by the VHF range link, using the Rendezvous Tracking Data Processing Routine. This quantity is a 15-bit integer with the least significant bit equal to 0.01 nmi. (multiply by 18.52 to obtain meters). Whenever the VHF Range Flag is found to be set, the routine (R22) reads the range value if at least 60 seconds have expired since the time of last reading. If so, the t_{VHF} is updated to the present time and a VHF range reading made. It is assumed, for practical purposes, that the range data is acquired at this present t_{VHF} but there actually is a very small time delay.
28a | VHF MARKS. The number of VHF ranging marks incorporated into the state vector since the initialization of P20, scaled 2^{-14}. This value is used in the N45 display and has a range of 0 to 99. VHF_CNT is incremented each time a VHF ranging mark is incorporated (approx. 1/min if P20 is operating, VHF ranging is on and VHF FLT, UPD FLT and TRACK FLT are set).
28b OPTIC MARKS. The number of optic marks incorporated into the state vector since the initialization of P20, scaled 2^{-14}. This item is used in the N45 display and has a range of 0 to 99. TRKMKCNT is incremented each time an optics mark is incorporated. The frequency depends upon the astronaut because marking is a manual operation.

29 TPI TIME. The time of ignition for the Rendezvous programs, scaled centiseconds/2^{28}. An estimate of this item can be calculated in P17 and then modified in P34 or left the same in P38. It can also be inputted via the DSKY.

30a ECSTEER. A pad-load erasable which may be used by P40 to set CSTEER, the constant "c" in the cross-product steering equation: $\Delta m = c\Delta t - \Delta v$, and in certain prethrust computations for P40/41. It is scaled as a 14-bit fraction/4. P34, P35, P38, P39 and P17 will set ECSTEER = 1.0. P37 will set ECSTEER = 0.5 whereas in P31 the value of "c" is determined by RTCC and uplinked with other target parameters. Values for "C" from -4.0 to +4.0 (less 1 bit) can be handled. The MIT standard is 1.0, except for P37 where 0.5 is used. Once set up prior to a burn, ECSTEER should be constant throughout the burn and post-burn sequences.

30b Garbage. This register may contain any of the following: (a) DVTOTAL, the summation of the magnitude of the Delta V's and also R3 of the N40 display during the P40, powered flight maneuver. This item is zeroed by PREREAD (TIG-30) and also shortly after entering P40. It is updated every 2 sec by SERVICER (after PIPA compensation). (b) END-DELV, the External Delta V Update. (c) DEL, MFI, MFS, three names given to the first of eighteen storage locations used for storing matrix information in the KALCMANU computations.

31 DELVTPF. The difference between the absolute velocities of the passive and active vehicles at intercept time $[ABVAL (VPASS4 - VTPRIME)]$, scaled (meters/centisecond)/2^7. This quantity is calculated once for each pass through either P34 or P38.

32-33 Spares. The description will be the same as the one used for word 31 in the Powered List.
TPF TIME. The time of intercept for the various rendezvous programs, scaled centisecond/228. It is one of the variables used in the determination of the required delta velocity for a rendezvous maneuver. It is calculated in P34/P74, P38/P78 and inputted to the midcourse programs, P35/P75 and P39/P79.

P30 DELV's. An impulsive Delta V in the local vertical coordinates of the active vehicle at the time of ignition specified by the astronaut (V06N81) or uplink and scaled meters/centiseconds/27. The local vertical coordinate system may be either earth-centered or moon-centered. There is no flagbit to indicate the origin point. The P30 ΔV vector is rotated into a basic reference coordinate system for use by P40 or P41.

RANGE. This parameter is involved in two areas, R31/R34 and R36. In either category it is scaled, meters/229. In R31/R34, RANGE is the magnitude of the difference between the two vehicles' (CSM-LM), radius vectors. In R36, RANGE represents the out-of-plane position and is computed as \(R = \| \mathbf{r}_C \| \cdot \left\{ \text{Unit} \left(\mathbf{v}_L \times \mathbf{r}_L \right) \right\} \). This item is calculated whenever R31, R34 or R36 is selected by the astronaut via V83, V85, or V90. The displayed value can range from 000.00 nmi. to 999.99 nmi. Once the routine is selected, RANGE is recomputed every 0.5 sec in R31/R34 until program termination ("PROCEED"); in R36 it is necessary to "RECYCLE" in order to have the value recomputed.

RRATE. This parameter is involved in two area, R31/R34 and R36. It is scaled (meters/centisecond)/27. In R31/R34 it is defined as the range rate between the two vehicles (CSM-LM) and is computed as \(\dot{R} = \left(\mathbf{v}_L - \mathbf{v}_C \right) \cdot \left\{ \text{UNIT} \left(\mathbf{r}_L - \mathbf{r}_C \right) \right\} \). A negative quantity indicates closing. In R36, RRATE represents velocity in the sense of \(\dot{Y} = \mathbf{v}_C \cdot \left\{ \text{UNIT} \left(\mathbf{v}_L \times \mathbf{r}_L \right) \right\} \). This item is calculated whenever R31, R34, or R36 is selected by the astronaut using verbs V83, V85, or V90. The displayed value can range from 0000.0 ft/s to 9999.9 ft/s. It is recomputed every 0.5 second in R31/R34 until program termination ("PROCEED"). In R36 it is necessary to RECYCLE in order to update the value, which is valid for an astronaut-selected time.

Same as words 40-76 of the Powered List.
P31 DELVEET3s. The impulsive DELTA V (X, Y, Z) calculated via the Lambert routine, scaled (meters/centisecond)/2^7. These quantities are based on the uplinked offset - target vector, time of ignition, and transfer time. They are calculated once and are used only for display purposes during P31. The Reference Coordinates may be either moon- or earth-centered. The system in use is indicated by the contents of erasable register, RTX2. If RTX2=0 the system is earth-centered but, if RTX2=2, the system is moon-centered.

Same as words 80-94 of the Powered List.

RTHETA serves two areas, R31/R34 and R36. In R31/R34 it is the angle from the local horizontal plane to either the CSM X-body axis (Noun 54 flashing) or to the SXT line of sight (Noun 53 flashing). In R36 it is the angle between the line of sight and the forward direction, measured in the local horizontal plane. The scaling, in both conditions, is in degrees/360. This item is calculated whenever R31, R34 or R36 is selected by the astronaut via V83, V85, or V90. It is computed every 0.5 second in R31/R34 until program termination ("PROCEED"). In P36, it is necessary to "RECYCLE" in order to have the value recomputed.

LAT(SPL). The latitude of the landing site (earth), scaled degrees/360. It is used only for DSKY display and is calculated and displayed at the end of both the conic phase and also the precision phase of the Return to Earth program. The range of values is from -90° to +90°. A negative value indicates south of the equator, whereas a positive one denotes north of the equator.

LNG(SPL). The longitude of the landing site (earth), scaled degrees/360. The range of values is from -180° to +180°. A negative quantity indicates west of Greenwich, whereas a positive one denotes east of Greenwich. This item is used for DSKY display only and is calculated and displayed at the end of both the conic phase and the precision phase of the Return to Earth program.
VPRD. The predicted velocity magnitude at an entry altitude of 400,000 ft above the Fischer Ellipsoid, scaled (meters/centi-second)/2^7. The range of values is from +75 meters/centisecond to +115 meters/centisecond. This item is used for DSKY display only and is calculated and displayed at the end of both the conic phase and the precision phase of the Return to Earth program.

GAMMAE. The flight path angle between the inertial velocity vector and the local horizontal at the entry interface altitude of 400,000 ft. above the Fischer Ellipsoid, scaled degrees/360. The range of values runs from -1° to -7° and is used for display only. A negative value indicates that the flight path is below the horizontal plane. This item is calculated and displayed at the end of both the conic and precision phases of the Return to Earth program.

Same as word 77 of the Powered List.
Contents

<table>
<thead>
<tr>
<th>Word Number</th>
<th>First Register</th>
<th>Second Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I. D. (77776<sub>B</sub>)</td>
<td>Synch Bits (77340<sub>B</sub>)</td>
</tr>
<tr>
<td>2</td>
<td>CSM State Vector (R<sub>XY</sub>)</td>
<td>CSM State Vector (R<sub>XYZ</sub>)</td>
</tr>
<tr>
<td>3</td>
<td>CSM State Vector (R<sub>Y</sub>)</td>
<td>CSM State Vector (R<sub>Y</sub>)</td>
</tr>
<tr>
<td>4</td>
<td>CSM State Vector (R<sub>Z</sub>)</td>
<td>CSM State Vector (R<sub>Z</sub>)</td>
</tr>
<tr>
<td>5</td>
<td>CSM State Vector (V<sub>X</sub>)</td>
<td>CSM State Vector (V<sub>X</sub>)</td>
</tr>
<tr>
<td>6</td>
<td>CSM State Vector (V<sub>Y</sub>)</td>
<td>CSM State Vector (V<sub>Y</sub>)</td>
</tr>
<tr>
<td>7</td>
<td>CSM State Vector (V<sub>Z</sub>)</td>
<td>CSM State Vector (V<sub>Z</sub>)</td>
</tr>
<tr>
<td>8</td>
<td>CSM State Vector Time</td>
<td>CSM State Vector Time</td>
</tr>
<tr>
<td>9</td>
<td>Actual X CDU angle</td>
<td>Actual Y CDU angle</td>
</tr>
<tr>
<td>10</td>
<td>Actual Z CDU angle</td>
<td>Optics CDU trunnion angle</td>
</tr>
<tr>
<td>11</td>
<td>ADOTS roll or OGARATE</td>
<td>ADOTS roll or OGARATE</td>
</tr>
<tr>
<td>12</td>
<td>ADOTS pitch or Omega B pitch</td>
<td>ADOTS pitch or Omega B pitch</td>
</tr>
<tr>
<td>13</td>
<td>ADOTS yaw or Omega B yaw</td>
<td>ADOTS yaw or Omega B yaw</td>
</tr>
<tr>
<td>14</td>
<td>X attitude error</td>
<td>Y attitude error</td>
</tr>
<tr>
<td>15</td>
<td>Z attitude error</td>
<td>RCS flags</td>
</tr>
<tr>
<td>16</td>
<td>THETADX</td>
<td>THETADY</td>
</tr>
<tr>
<td>17</td>
<td>THETADZ</td>
<td>Garbage</td>
</tr>
<tr>
<td>18</td>
<td>ENTRY DAP MODE</td>
<td>PREL (roll rate)</td>
</tr>
<tr>
<td>19</td>
<td>QREL (pitch rate)</td>
<td>RREL (yaw rate)</td>
</tr>
<tr>
<td>20</td>
<td>L/D1</td>
<td>L/D1</td>
</tr>
<tr>
<td>21</td>
<td>* UPBUFF</td>
<td>UPBUFF+1</td>
</tr>
<tr>
<td>22</td>
<td>* UPBUFF+2</td>
<td>UPBUFF+3</td>
</tr>
<tr>
<td>23</td>
<td>* UPBUFF+4</td>
<td>UPBUFF+5</td>
</tr>
<tr>
<td>24</td>
<td>* UPBUFF+6</td>
<td>UPBUFF+7</td>
</tr>
<tr>
<td>25</td>
<td>* UPBUFF+8D</td>
<td>UPBUFF+9D</td>
</tr>
<tr>
<td>26</td>
<td>* UPBUFF+10D</td>
<td>UPBUFF+11D</td>
</tr>
<tr>
<td>27</td>
<td>* UPBUFF+12D</td>
<td>UPBUFF+13D</td>
</tr>
<tr>
<td>28</td>
<td>* UPBUFF+14D</td>
<td>UPBUFF+15D</td>
</tr>
<tr>
<td>29</td>
<td>* UPBUFF+16D</td>
<td>UPBUFF+17D</td>
</tr>
<tr>
<td>30</td>
<td>* UPBUFF+18D</td>
<td>UPBUFF+19D</td>
</tr>
<tr>
<td>31</td>
<td>COMPNUMB</td>
<td>UPOLDMOD</td>
</tr>
<tr>
<td>32</td>
<td>UPVERB</td>
<td>UPCOUNT</td>
</tr>
<tr>
<td>33</td>
<td>Roll error</td>
<td>Roll angle</td>
</tr>
<tr>
<td>34</td>
<td>LATANG</td>
<td>LATANG</td>
</tr>
<tr>
<td>35</td>
<td>RDOT</td>
<td>RDOT</td>
</tr>
<tr>
<td>36</td>
<td>THETAH</td>
<td>THETAH</td>
</tr>
<tr>
<td>37</td>
<td>GEODETIC LAT (SPLSH)</td>
<td>GEODETIC LAT (SPLSH)</td>
</tr>
<tr>
<td>38</td>
<td>LONG (SPLSH)</td>
<td>LONG (SPLSH)</td>
</tr>
</tbody>
</table>

* Indicates two single precision quantities that are not indicated otherwise.
<table>
<thead>
<tr>
<th>Word Number</th>
<th>First Register</th>
<th>Second Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>ALPHA</td>
<td>BETA</td>
</tr>
<tr>
<td>40</td>
<td>Flagword 0</td>
<td>Flagword 1</td>
</tr>
<tr>
<td>41</td>
<td>Flagword 2</td>
<td>Flagword 3</td>
</tr>
<tr>
<td>42</td>
<td>Flagword 4</td>
<td>Flagword 5</td>
</tr>
<tr>
<td>43</td>
<td>Flagword 6</td>
<td>Flagword 7</td>
</tr>
<tr>
<td>44</td>
<td>Flagword 8</td>
<td>Flagword 9</td>
</tr>
<tr>
<td>45</td>
<td>DSPTAB+0</td>
<td>DSPTAB+1</td>
</tr>
<tr>
<td>46</td>
<td>DSPTAB+2</td>
<td>DSPTAB+3</td>
</tr>
<tr>
<td>47</td>
<td>DSPTAB+4</td>
<td>DSPTAB+5</td>
</tr>
<tr>
<td>48</td>
<td>DSPTAB+6</td>
<td>DSPTAB+7</td>
</tr>
<tr>
<td>49</td>
<td>DSPTAB+8D</td>
<td>DSPTAB+9D</td>
</tr>
<tr>
<td>50</td>
<td>DSPTAB+10D</td>
<td>DSPTAB+11D</td>
</tr>
<tr>
<td>51</td>
<td>TIME 2</td>
<td>TIME 1</td>
</tr>
<tr>
<td>52</td>
<td>PIPTIME1</td>
<td>PIPTIME1</td>
</tr>
<tr>
<td>53</td>
<td>DELVX</td>
<td>DELVX</td>
</tr>
<tr>
<td>54</td>
<td>DELVY</td>
<td>DELVY</td>
</tr>
<tr>
<td>55</td>
<td>DELVZ</td>
<td>DELVZ</td>
</tr>
<tr>
<td>56</td>
<td>TTE (EMS)</td>
<td>TTE (EMS)</td>
</tr>
<tr>
<td>57</td>
<td>VIO</td>
<td>VIO</td>
</tr>
<tr>
<td>58</td>
<td>VPRED (EI)</td>
<td>VPRED (EI)</td>
</tr>
<tr>
<td>59</td>
<td>Actual X CDU angle</td>
<td>Actual Y CDU angle</td>
</tr>
<tr>
<td>60</td>
<td>Actual Z CDU angle</td>
<td>Optics CDU trunnion angle</td>
</tr>
<tr>
<td>61</td>
<td>ADOTS roll or OGRATE</td>
<td>ADOTS roll or OGRATE</td>
</tr>
<tr>
<td>62</td>
<td>ADOTS pitch or OMEGA B pitch</td>
<td>ADOTS pitch or OMEGA B pitch</td>
</tr>
<tr>
<td>63</td>
<td>ADOTS yaw or OMEGA B yaw</td>
<td>ADOTS yaw or OMEGA B yaw</td>
</tr>
<tr>
<td>64</td>
<td>X attitude error</td>
<td>Y attitude error</td>
</tr>
<tr>
<td>65</td>
<td>Z attitude error</td>
<td>RCS flags</td>
</tr>
<tr>
<td>66</td>
<td>ERROR X</td>
<td>ERROR Y</td>
</tr>
<tr>
<td>67</td>
<td>ERROR Z</td>
<td>THETADX</td>
</tr>
<tr>
<td>68</td>
<td>THETADY</td>
<td>THETADZ</td>
</tr>
<tr>
<td>69</td>
<td>ENTRY DAP MODE</td>
<td>PREL (roll rate)</td>
</tr>
<tr>
<td>70</td>
<td>QREL (pitch rate)</td>
<td>RREL (yaw rate)</td>
</tr>
<tr>
<td>71</td>
<td>UPBUFF</td>
<td>UPBUFF+1</td>
</tr>
<tr>
<td>72</td>
<td>UPBUFF+2</td>
<td>UPBUFF+3</td>
</tr>
<tr>
<td>73</td>
<td>UPBUFF+4</td>
<td>UPBUFF+5</td>
</tr>
<tr>
<td>74</td>
<td>UPBUFF+6</td>
<td>UPBUFF+7</td>
</tr>
<tr>
<td>75</td>
<td>UPBUFF+8D</td>
<td>UPBUFF+9D</td>
</tr>
<tr>
<td>Word Number</td>
<td>First Register</td>
<td>Second Register</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>76</td>
<td>UPBUFF+10D</td>
<td>UPBUFF+11D</td>
</tr>
<tr>
<td>77</td>
<td>UPBUFF+12D</td>
<td>UPBUFF+13D</td>
</tr>
<tr>
<td>78</td>
<td>UPBUFF+14D</td>
<td>UPBUFF+15D</td>
</tr>
<tr>
<td>79</td>
<td>UPBUFF+16D</td>
<td>UPBUFF+17D</td>
</tr>
<tr>
<td>80</td>
<td>UPBUFF+18D</td>
<td>UPBUFF+19D</td>
</tr>
<tr>
<td>81</td>
<td>LM MASS</td>
<td>CM MASS</td>
</tr>
<tr>
<td>82</td>
<td>DAPDATR1</td>
<td>DAPDATR2</td>
</tr>
<tr>
<td>83</td>
<td>Roll Angle</td>
<td>Roll Command</td>
</tr>
<tr>
<td>84</td>
<td>OPTMODES</td>
<td>HOLDFLAG</td>
</tr>
<tr>
<td>85</td>
<td>WBODY (roll) or OMEGAC (roll)</td>
<td>WBODY (roll) or OMEGAC (roll)</td>
</tr>
<tr>
<td>86</td>
<td>WBODY (pitch) or OMEGAC (pitch)</td>
<td>WBODY (pitch) or OMEGAC (pitch)</td>
</tr>
<tr>
<td>87</td>
<td>WBODY (yaw) or OMEGAC (yaw)</td>
<td>WBODY (yaw) or OMEGAC (yaw)</td>
</tr>
<tr>
<td>88</td>
<td>REDO COUNTER</td>
<td>Desired Final CDU X</td>
</tr>
<tr>
<td>89</td>
<td>Desired FINAL CDU Y</td>
<td>Desired FINAL CDU Z</td>
</tr>
<tr>
<td>90</td>
<td>IMODES 30</td>
<td>IMODES 33</td>
</tr>
<tr>
<td>91</td>
<td>Channel 11</td>
<td>Channel 12</td>
</tr>
<tr>
<td>92</td>
<td>Channel 13</td>
<td>Channel 14</td>
</tr>
<tr>
<td>93</td>
<td>Channel 30</td>
<td>Channel 31</td>
</tr>
<tr>
<td>94</td>
<td>Channel 32</td>
<td>Channel 33</td>
</tr>
<tr>
<td>95</td>
<td>* RSBBQ</td>
<td>RSBBQ+1</td>
</tr>
<tr>
<td>96</td>
<td>* CADRFLSH</td>
<td>CADRFLSH+1</td>
</tr>
<tr>
<td>97</td>
<td>* CADRFLSH+2</td>
<td>FAILREG</td>
</tr>
<tr>
<td>98</td>
<td>* FAILREG+1</td>
<td>FAILREG+2</td>
</tr>
<tr>
<td>99</td>
<td>Flagword 10</td>
<td>Flagword 11</td>
</tr>
<tr>
<td>100</td>
<td>GAMMA (EI)</td>
<td>Range for Initialization</td>
</tr>
</tbody>
</table>

* Indicates two single precision quantities that are not indicated otherwise.
Word Number | Contents
--- | ---
1a | I.D. word for this list. It will contain 77776_8.
1b | Synch bits. It will contain 77340_8.
2-17 | Same as words 2-17 on the Powered List.
18a | ENTRY DAP MODE. A 4-position switch specifying branching in ENTRY DAP, scaled 2^{-14}.
 | Set to "-1" (77776_8) if entry equations sense drag in excess of 0.05 g.
 | Set to "-0" (77777_8) if the ALFA angle (pitch attitude) magnitude is greater than 135°.
 | Set to "+1" (00001_8) if the ALFA angle magnitude is in the range 45°-135°.
 | Set to "+0" (00000_8) if the ALFA angle is less than 45°.
The expected value sequence would be, $+1\rightarrow+0\rightarrow-1$. The value, -0, is not generally expected. This item is calculated each 0.1 second after the DAP is turned on in P62. Flagword 6, bits 12 and 2, indicates an active DAP.
18b, 19 | PREL, QREL, RREL. The single-precision roll, pitch and yaw rates, components of the CM angular velocity vector along the body X, Y, and Z axes and scaled (degrees/sec)/1800. All are corrected for $\ddot{\gamma}_E$ if $\ddot{\gamma}_E > \ddot{\gamma}_E$ min. The expected range of values would be: PREL $\pm 20^0$/sec, QREL $\pm 4^0$/sec, RREL $\pm 17^0$/sec. These quantities are calculated each 0.1 sec after the DAP is turned on in P62.
The functioning is indicated by non-zero values in both bit 1 and bit 2 of flagword 6.
20 | L/D1. The commanded value of lift-to-drag ratio used in Reentry Steering to provide Roll Command, scaled 2^0. It is computed whenever lateral logic is exercised, normally each 2 seconds after the initiation of P64 until the velocity becomes less than 1000 ft/sec in P67. The value range should be equal to, or less than, 1.0. It is omitted in P66. LAD is pad loaded.
UPBUFF's. These twenty registers, UPBUFF through
UPBUFF +19D, contain the uplinked octal components in the
transmitted order. If the update is composed of less than
twenty quantities, the remaining registers will contain garbage.

COMPNUMB. The total number (octal) of components the update
program expects to receive. For a Verb 71 or a Verb 72 update,
COMPNUMB will be set equal to the index value.

UPOLDMOD. This is the number of the CMC program which
was interrupted by P27, the update program. It will indicate
program 0, 2, or Fresh Start (-0₈).

UPVERB. The least significant digit of the verb number which
was selected to initiate a desired CMC update.

UPCOUNT. The octal identifier of the next quantity that the up-
date program expects to receive. As each quantity goes into
UPBUFF, UPCOUNT will be incremented by one, until it is
equal to COMPNUMB. It will not change during a line-by-line
correction of the data load.

ROLL ERROR. The CM roll attitude error in body axes generated
by the DAP and displayed on the FDAI needle, scaled degrees/360.
The error is integrated each 0.1 sec between 2-second DAP up-
dates. This quantity is the same as the item, AK, except for the
scale factor, and is active only after the DAP is turned on in P62.
A one in bit 12 of flagword 6 indicates such activity.

ROLL ANGLE. The roll attitude angle used by ENTRY DAP,
scaled degrees/180. It is the first Euler rotation of the CM body
triad about the negative relative velocity vector -UV_A, along
which UB_X points. The value ranges ± 360°, is calculated after
the DAP is turned on in P62 and is updated each 0.1 second during
its operating period. Operation is indicated by a non-zero in
bit 12 of flagword 6.

LATANG. The lateral range expressed as an angle, scaled
radians/4. It will range at less than 200 nmi and is calculated
each 2 seconds after the initiation of P63 until the end of P67.
RDOT. Altitude rate. The radial component of velocity (negative if descending), scaled (feet/sec)/(2 × 25766.1973). This is a scalar component calculated in earth-centered reference coordinates. If bit 9, flagword 6 (RELVELSW) is zero, the velocity used is inertial. If bit 9, flagword 6 is a one, a velocity relative to air mass is used. The expected range of values runs from less than -7000 ft/sec to +1000 ft/sec and is calculated each 2 seconds after P63 until the end of P67.

THETAH. The range between the present position and the estimated landing site, expressed as an angle and scaled, degrees/360. The expected value is less than 180°. It is calculated each 2 seconds after P63 until the end of P67. It is used in P61 for computing EMS display but is not on the Powered Flight downlist, however.

LAT(SPL). The geodetic latitude of the entry target, scaled degrees/360. A positive quantity denotes North while a negative quantity indicates South. This parameter is pad loaded or DSKY loaded when P61 or P62 is in progress. It is also computed in P37 (Return to Earth) and displayed.

LONG(SPL). The longitude of the entry target scaled, degrees/360. A positive quantity indicates East while a negative quantity denotes West. This parameter is pad loaded or DSKY loaded when P61 or P62 is in progress. It is also computed in P37 (Return to Earth) and displayed.

ALPHA. The pitch attitude angle, used by ENTRY DAP and scaled, degrees/180. It is the third rotation of the CM body triad in the Euler sequence R, β, α, and is about UBY. The value range is ± 180° and is calculated each 0.1 second after the DAP is turned on in P62. Operation of such is indicated by a non-zero value in bit 12, flagword 6. (Bits 1 and 2 are also non-zero.)

BETA. The yaw attitude angle, used by ENTRY DAP and scaled degrees/180. It is the second rotation of the CM body triad in the Euler sequence R, β, α, and is about UBZ. The range is ± 90° and is calculated each 0.1 second after the DAP is turned on in P62. This state is indicated by a non-zero value in bit 12, flagword 6. (Bits 1 and 2, flagword 6, will also be zero.)
40-51 Same as words 40-51 of the Powered List.

52 Same as word 24 of the Powered List.

53-55 Same as words 25-27 of the Powered List.

56 TTE(EMS). The time required to traverse the conic path from the present position to the specified EMS altitude above the Fischer ellipsoid, expressed as a negative number, counting down and scaled, centisecond/2²⁸. The value is < 40 min and is calculated in a one-shot fashion in P61. TTE is stored when generated in P61. It will be decremented once just prior to display via N63 to account for time lapse. Thus, this parameter will change twice during P61; once when calculated and once when displayed. This change will not be seen if the Powered Flight downlist is used during P61 but will appear if the Entry and Update List becomes the P61 List.

57 VIO. The predicted entry velocity at the EMS altitude above the Fischer radius along a conic path from the present position, scaled (meters/centisecond)/2⁷. The value will be approximately 38,000 ft/s and be calculated once in P61.

58 VPRED(EI). The predicted entry velocity at 400K feet above the Fischer radius along a conic path from the present position, scaled (meters/centisecond)/2⁷. The value will be approximately 38K ft/s and be calculated once, in P61.

59-65 Same as words 59-65 on the Powered List.

66-67a Same as words 83, 84a on the Powered List.

67b-68 Same as words 16, 17a on the Powered List.

69-70 Repeat of words 18-19 of this list.

71-80 Repeat of words 21-30 of this list.

81-82 Same as words 81-82 on the Powered List.

83a Same as word 33b of this list.

83b ROLL COMMAND. The most significant half of roll attitude command issued by Entry Guidance equations and used by the Entry DAP, scaled degrees/360. The angle is defined as a rotation about the negative relative velocity vector, \(-\vec{V}_{\text{REL}}\). The value will range ± 180° and is initially set in P62, based on HEADSUP, and holds until the drag exceeds 0.05 g. The quantity will be changed each 2 seconds after P64 until P67.
84 Same as word 80 on the Powered List.
85-94 Same as words 85-94 on the Powered List.
95-98 Same as words 68-71 on the Powered List.
99 Same as word 77 on the Powered List.

100a GAMMA(EI). The conic flight path angle between the inertial velocity and the local horizontal at the entry interface altitude of 400,000 ft above the Fischer ellipsoid, scaled degrees/360. A minus quantity indicates that the flight path is below the horizontal plane. This item is calculated once, in P61.

100b RANGE for INITIALIZATION. The predicted range angle from the EMS altitude above Fischer radius to target along conic from present position, scaled degrees/360. This value is calculated once, in P61.

REENTRY and DAP SHARING of DOWNLIST REGISTERS

Words 11-13 ADOT, ...+5 = XPPIPBUF, YPIPBUF, ZPIPBUF
 PIPA Buffers for TM during
 ENTRY. PIPs filed here every
 0.5 second.
 XOLDBUF, YOLDBUF, ZOLDBUF
 Contain PIPA value previously in PIPBUF.
 Scaled (centimeters/second)/(5.85 x 10^4).

Word 16a THETADX = QAXERR, Pitch attitude error. Scaled degrees/180.
Word 16b THETADY = RAXERR, Yaw attitude error. Scaled degrees/180.
Word 17a THETADZ = Q7, (high order register) minimum drag for UPCONTROL (The low-order register information is lost). Scaled (ft/sec^2)/805.

Word 21a UPBUFF = CMTMTIME, Time at which body-rate list was last initialized. Scaled centiseconds/2^28.

Word 21b UPBUFF +1 = SW/NDX, Combined switch and index associated with FDAI display and TM. See COLOSSUS GSOP Section 3 page 3.4-72.
Words 22a-29a UPBUFF +2,
...+16D = Body rates in the sequence, PREL, QREL, RREL, PREL, QREL, RREL, etc. Scaled (degrees/sec)/1800.

Words 29b, 30a UPBUFF +17D,
...+18D = V1, initial velocity for UPCONTROL. Scaled (ft/sec)/2 x 25766.1973.

Word 30b UPBUFF +19D = A0 (high order register) initial drag for UPCONTROL. Scaled (ft/sec)/805.0.

Word 56 TTE, ...+1 = L/DCALC, onboard estimate of L/D ratio. Scaled 2^0 (max. value of 1.0).

Word 57 VIO, ...+1 = LEWD, UPCONTROL reference, L/D. Scaled 2^0 (max. value of 1.0).

Word 58 VPRED, ...+1 = VL, exit velocity for UPCONTROL. Scaled (ft/sec)/2 x 25766.1973.

Word 66a ERRORX = VDT/180, preselected drifting rate used by Roll DAP (0 = DAP in dead zone). Scaled (deg/sec)/90.

Word 66b ERRORY = VT/180E, minus roll rate used by the Roll DAP update cycle. Scaled (-deg/sec)/90.

Words 85-87 WBODY, ...+5
= ASKEP, Keppler range.
ASPL, final phase range.
ASPU, Up-range.
ASPDN, range down to PULL-UP.
ASUP (double-precision) gamma correction.
All scaled, deg/360.

Words 88b, 89 THETAD, ...+2
= RDOTREF (double-precision), reference RDOT for UPCONTROL. VREF (high-order register only), reference velocity for UPCONTROL. Both scaled (ft/sec)/2 x 25766.1973.

Word 100 GAMMAEI, ...+1

First Time Sharing = GAMMAL (double-precision), flight-path angle at VL. Scaled deg/(180/π).

Second Time Sharing = PREDANG (single-precision), predicted range, final phase.
JJ (single-precision), index in final phase, table look-up. Both scaled, nm/2700.

2-118
<table>
<thead>
<tr>
<th>Word Number</th>
<th>First Register</th>
<th>Second Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I.D. (77773<sub>8</sub>)</td>
<td>Synch bits (77340<sub>8</sub>)</td>
</tr>
<tr>
<td>2</td>
<td>CSM State Vector (R<sub>X</sub>)</td>
<td>CSM State Vector (R<sub>X</sub>)</td>
</tr>
<tr>
<td>3</td>
<td>CSM State Vector (R<sub>Y</sub>)</td>
<td>CSM State Vector (R<sub>Y</sub>)</td>
</tr>
<tr>
<td>4</td>
<td>CSM State Vector (R<sub>Z</sub>)</td>
<td>CSM State Vector (R<sub>Z</sub>)</td>
</tr>
<tr>
<td>5</td>
<td>CSM State Vector (V<sub>X</sub>)</td>
<td>CSM State Vector (V<sub>X</sub>)</td>
</tr>
<tr>
<td>6</td>
<td>CSM State Vector (V<sub>Y</sub>)</td>
<td>CSM State Vector (V<sub>Y</sub>)</td>
</tr>
<tr>
<td>7</td>
<td>CSM State Vector (V<sub>Z</sub>)</td>
<td>CSM State Vector (V<sub>Z</sub>)</td>
</tr>
<tr>
<td>8</td>
<td>CSM State Vector Time</td>
<td>CSM State Vector Time</td>
</tr>
<tr>
<td>9</td>
<td>Actual X CDU angle</td>
<td>Actual Y CDU angle</td>
</tr>
<tr>
<td>10</td>
<td>Actual Z CDU angle</td>
<td>Optics CDU trunnion angle</td>
</tr>
<tr>
<td>11</td>
<td>ADOTS roll or OGARATE</td>
<td>ADOTS roll or OGARATE</td>
</tr>
<tr>
<td>12</td>
<td>ADOTS pitch or Omega B pitch</td>
<td>ADOTS pitch or Omega B pitch</td>
</tr>
<tr>
<td>13</td>
<td>ADOTS yaw or Omega B yaw</td>
<td>ADOTS yaw or Omega B yaw</td>
</tr>
<tr>
<td>14</td>
<td>X attitude error</td>
<td>Y attitude error</td>
</tr>
<tr>
<td>15</td>
<td>Z attitude error</td>
<td>RCS flags</td>
</tr>
<tr>
<td>16</td>
<td>THETADX</td>
<td>THETADY</td>
</tr>
<tr>
<td>17</td>
<td>THETADZ</td>
<td>Garbage</td>
</tr>
<tr>
<td>18</td>
<td>MARKTIME for first mark</td>
<td>MARKTIME for first mark</td>
</tr>
<tr>
<td>19</td>
<td>INNER GIMBAL ANGLE</td>
<td>SHAFT ANGLE</td>
</tr>
<tr>
<td>20</td>
<td>MIDDLE GIMBAL ANGLE</td>
<td>TRUNNION ANGLE</td>
</tr>
<tr>
<td>21</td>
<td>OUTER GIMBAL ANGLE</td>
<td>Most significant part of MARKTIME for second mark</td>
</tr>
<tr>
<td>22</td>
<td>Least significant part of MARKTIME for second mark</td>
<td>INNER GIMBAL ANGLE</td>
</tr>
<tr>
<td>Word Number</td>
<td>First Register</td>
<td>Second Register</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>35</td>
<td>OUTER GIMBAL ANGLE</td>
<td>Garbage</td>
</tr>
<tr>
<td>36</td>
<td>LANDMARK</td>
<td>Garbage</td>
</tr>
<tr>
<td>37</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>38</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>39</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>40</td>
<td>Flagword 0</td>
<td>Flagword 1</td>
</tr>
<tr>
<td>41</td>
<td>Flagword 2</td>
<td>Flagword 3</td>
</tr>
<tr>
<td>42</td>
<td>Flagword 4</td>
<td>Flagword 5</td>
</tr>
<tr>
<td>43</td>
<td>Flagword 6</td>
<td>Flagword 7</td>
</tr>
<tr>
<td>44</td>
<td>Flagword 8</td>
<td>Flagword 9</td>
</tr>
<tr>
<td>45</td>
<td>DSPTAB+0</td>
<td>DSPTAB+1</td>
</tr>
<tr>
<td>46</td>
<td>DSPTAB+2</td>
<td>DSPTAB+3</td>
</tr>
<tr>
<td>47</td>
<td>DSPTAB+4</td>
<td>DSPTAB+5</td>
</tr>
<tr>
<td>48</td>
<td>DSPTAB+6</td>
<td>DSPTAB+7</td>
</tr>
<tr>
<td>49</td>
<td>DSPTAB+8D</td>
<td>DSPTAB+9D</td>
</tr>
<tr>
<td>50</td>
<td>DSPTAB+10D</td>
<td>DSPTAB+11D</td>
</tr>
<tr>
<td>51</td>
<td>TIME 2</td>
<td>TIME 1</td>
</tr>
<tr>
<td>52</td>
<td>LANDMARK LATITUDE</td>
<td>LANDMARK LATITUDE</td>
</tr>
<tr>
<td>53</td>
<td>LANDMARK LONGITUDE</td>
<td>LANDMARK LONGITUDE</td>
</tr>
<tr>
<td>54</td>
<td>LANDMARK ALTITUDE</td>
<td>LANDMARK ALTITUDE</td>
</tr>
<tr>
<td>55</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>56</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>57</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>58</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>59</td>
<td>Actual X CDU angle</td>
<td>Actual Y CDU angle</td>
</tr>
<tr>
<td>60</td>
<td>Actual Z CDU angle</td>
<td>Optics CDU trunnion angle</td>
</tr>
<tr>
<td>61</td>
<td>ADOTS roll or OGARATE</td>
<td>ADOTS roll or OGARATE</td>
</tr>
<tr>
<td>62</td>
<td>ADOTS pitch or Omega B pitch</td>
<td>ADOTS pitch or Omega B pitch</td>
</tr>
<tr>
<td>63</td>
<td>ADOTS yaw or Omega B yaw</td>
<td>ADOTS yaw or Omega B yaw</td>
</tr>
<tr>
<td>64</td>
<td>X attitude error</td>
<td>Y attitude error</td>
</tr>
<tr>
<td>65</td>
<td>Z attitude error</td>
<td>RCS flags</td>
</tr>
<tr>
<td>66</td>
<td>THETADX</td>
<td>THETADY</td>
</tr>
<tr>
<td>67</td>
<td>THETADZ</td>
<td>Garbage</td>
</tr>
<tr>
<td>68</td>
<td>* RSBBQ</td>
<td>RSBBQ+1</td>
</tr>
<tr>
<td>69</td>
<td>* CADDRFLSH</td>
<td>CADDRFLSH+1</td>
</tr>
<tr>
<td>70</td>
<td>* CADDRFLSH+2</td>
<td>FAILREG</td>
</tr>
<tr>
<td>71</td>
<td>* FAILREG+1</td>
<td>FAILREG+2</td>
</tr>
<tr>
<td>72</td>
<td>Optics Shaft</td>
<td>PIPAX</td>
</tr>
</tbody>
</table>

* Indicates two single precision quantities that are not indicated otherwise.
<table>
<thead>
<tr>
<th>Word Number</th>
<th>First Register</th>
<th>Second Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>PIPAY</td>
<td>PIPAZ</td>
</tr>
<tr>
<td>74</td>
<td>Number of Marks</td>
<td>Garbage</td>
</tr>
<tr>
<td>75</td>
<td>Flagword 10</td>
<td>Flagword 11</td>
</tr>
<tr>
<td>76</td>
<td>Landing Site Vector X comp.</td>
<td>Landing Site Vector X comp.</td>
</tr>
<tr>
<td>77</td>
<td>Landing Site Vector Y comp.</td>
<td>Landing Site Vector Y comp.</td>
</tr>
<tr>
<td>78</td>
<td>Landing Site Vector Z comp.</td>
<td>Landing Site Vector Z comp.</td>
</tr>
<tr>
<td>79</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>80</td>
<td>OPTMODES</td>
<td>HOLDFLAG</td>
</tr>
<tr>
<td>81</td>
<td>LM MASS</td>
<td>CM MASS</td>
</tr>
<tr>
<td>82</td>
<td>DAPDATR1</td>
<td>DAPDATR2</td>
</tr>
<tr>
<td>83</td>
<td>ERROR X</td>
<td>ERROR Y</td>
</tr>
<tr>
<td>84</td>
<td>ERROR Z</td>
<td>Garbage (THETADX)</td>
</tr>
<tr>
<td>85</td>
<td>WBODY (roll) or OMEGAC (roll)</td>
<td>WBODY (roll) or OMEGAC (roll)</td>
</tr>
<tr>
<td>86</td>
<td>WBODY (pitch) or OMEGAC (pitch)</td>
<td>WBODY (pitch) or OMEGAC (pitch)</td>
</tr>
<tr>
<td>87</td>
<td>WBODY (yaw) or OMEGAC (yaw)</td>
<td>WBODY (yaw) or OMEGAC (yaw)</td>
</tr>
<tr>
<td>88</td>
<td>REDO COUNTER</td>
<td>Desired FINAL CDU X</td>
</tr>
<tr>
<td>89</td>
<td>Desired FINAL CDU Y</td>
<td>Desired FINAL CDU Z</td>
</tr>
<tr>
<td>90</td>
<td>IMODES 30</td>
<td>IMODES 33</td>
</tr>
<tr>
<td>91</td>
<td>Channel 11</td>
<td>Channel 12</td>
</tr>
<tr>
<td>92</td>
<td>Channel 13</td>
<td>Channel 14</td>
</tr>
<tr>
<td>93</td>
<td>Channel 30</td>
<td>Channel 31</td>
</tr>
<tr>
<td>94</td>
<td>Channel 32</td>
<td>Channel 33</td>
</tr>
<tr>
<td>95</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>96</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>97</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>98</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>99</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>100</td>
<td>Spare</td>
<td>Spare</td>
</tr>
</tbody>
</table>
2.2.2.10 Program 22 List

<table>
<thead>
<tr>
<th>Word Number</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>I.D. word for this list, 77773^8.</td>
</tr>
<tr>
<td>1b</td>
<td>Synch bits, 77340^8.</td>
</tr>
<tr>
<td>2-17</td>
<td>Same as words 2-17 on the Powered List.</td>
</tr>
<tr>
<td>18-35a</td>
<td>LANDING SITE MARK DATA. These thirty-five registers contain the mark data which is being used to update the CSM state vector and the landmark position coordinates. Each mark, of which five are allowed, consists of six parameters stored in seven registers. These quantities, listed in the correct transmitted order, are:</td>
</tr>
<tr>
<td></td>
<td>Time since epoch (double precision) scaled centiseconds/2$^{-28}$.</td>
</tr>
<tr>
<td></td>
<td>Inner gimbal angle (CDUY)</td>
</tr>
<tr>
<td></td>
<td>Optics Shaft angle 15-bit unsigned fractions, scaled degrees/360.</td>
</tr>
<tr>
<td></td>
<td>Middle gimbal angle (CDUZ)</td>
</tr>
<tr>
<td></td>
<td>Optics Trunnion angle, scaled (degrees-19.7754)/45 (two's complement). The bias, 19.7754, is programmed-in.</td>
</tr>
<tr>
<td></td>
<td>SVMRKDAT through SVMRKDAT +34 is set at the beginning of P22 after the operation of the Sighting Mark Routine, R53. R53 leaves the mark data in the VAC area and, for simplicity, P22 moves a total of 36 registers via a six-cycle loop of a VLOAD followed by a STORE instruction. P22 performs in this manner not caring whether the number of marks is one or five. P22 clears flag, P22MKFLG, before moving the mark data and sets it after moving the data to signify that the SVMRKDAT table contains the latest mark data. If CMOONFLG, bit 12, Flagword 8, is a zero, the coordinate system is earth-centered. A one in this bit position would indicate a moon-centered coordinate system.</td>
</tr>
</tbody>
</table>

2-123
Garbage. This register will contain an indeterminable background quantity from the 36th register of the Marking program, SXTMARK.

LANDMARK ID contains the R2 entry by the astronaut after a V05N70 or V05N71 action. It contains five octal digits, ABCDE, which describe the landmark as follows:

- A = 1 if landmark is known.
- A = 2 if landmark is unknown.
- B = index of offset designator.
- C = not used.
- DE = 00 for a landmark whose coordinates are not stored in the CMC memory.
- DE = 01 for the landing site.
- DE = 02 through 32, for the index number whose coordinates are stored in the CMC fixed memory.

The offset indicator, B, is set to zero at the start of P22. The astronaut may change all items after a V05N70 or V05N71. It is used by P22 after each of these verbs to extract the information described above.

Garbage. This register is used for the low-order register of the first component of the VMOON vector and also by the item, HORIZON (the P23 horizon identification).

SPARES. Same description as word 31 of the Powered List.

Same as words 40-51 on the Powered List.

LANDMARK LATITUDE is the latitude of the landmark which P22 is updating, scaled degrees/360. It may be either earth-centered or moon-centered. If, upon entry of P22, CMOONFLG (Flagword 8, bit 12) equals zero, the coordinate system is earth-centered. Conversely, the coordinate system will be moon-centered if CMOONFLG equals one. It does not change within P22. The landmark may be either known or unknown. If known, it may be either entered by the astronaut, obtained from landmark tables stored in the fixed memory, or obtained from the item, RLS (lunar landing site). The range of values is \(-0.25\) revolutions \(\leq\) LAT \(\leq\) 0.25 revolutions. The latitude is computed for known landmarks only at the start of P22. At the completion of P22, the latitude is computed for all landmarks and contains the updated value. Item LANDLAT occupies the same locations as LAT and is identical in meaning. LANDLAT is the item used by noun 89 to display landmark latitude.
LANDMARK LONGITUDE is the longitude of the landmark which P22 is updating, scaled degrees/360. The range of values is -.5 revolutions ≤ LONG ≤ .5 revolutions. It may be either earth-centered or moon-centered. If, upon entry of P22, CMOONFLG (Flagword 8, bit 12) equals zero, the coordinate system is earth-centered. Conversely, the coordinate system will be moon-centered if CMOONFLG equals one. The longitude is computed for known landmarks only at the start of P22. At the completion of P22, the longitude is computed for all landmarks and contains the updated value.

LANDMARK ALTITUDE is the altitude of the landmark above the Fischer Ellipsoid for earth orbit and above the mean lunar radius for moon orbit, scaled meters/2^{29}. Tested values have varied between +2000 to -2000 meters. It may be either earth-centered or moon-centered. If, upon entry of P22, CMOONFLG (Flagword 8, bit 12) equal zero, the coordinate system is earth-centered. Conversely, the coordinate system will be moon-centered if CMOONFLG equals one. The altitude is computed for known landmarks only at the start of P22. At the completion of P22, the altitude is computed for all landmarks and contains the updated value.

SPARES. Same description as word 31 of the Powered List.

Same as words 59-73 on the Powered List.

The number of valid Landing site marks, from one to five, which are stored in the SVMRKDAT table, scaled 2^{-14}. This item is computed by R53 and left in QPRET. P22 moves it from QPRET to 8NN. This quantity is computed once per operation of P22 and does not change.

Garbage. This register is used by S22LOC which indicates the address, within the SVMRKDAT table, of the present set of mark data.

Same as word 77 of the Powered List.

LUNAR LANDING SITE POSITION VECTOR (X, Y, Z) measured in moon-fixed coordinates from the center of the moon to the surface of the moon at the landing site, scaled meters/2^{27}. It is used in lunar orbits only and must be selected by the astronaut using nouns 70 or 71. If selected by the astronaut, it is used at the start of P22 to compute the initial landmark vector (R_L) and then updated at the end of P22 as a result of data computed from the results of astronaut-acquired sighting marks.
<table>
<thead>
<tr>
<th>Word Number</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>SPARE. Same description as word 31 of the Powered List.</td>
</tr>
<tr>
<td>80-94</td>
<td>Same as words 80-94 of the Powered List.</td>
</tr>
<tr>
<td>95-100</td>
<td>Spares. Same description as word 31 of the Powered List.</td>
</tr>
<tr>
<td>Name</td>
<td>Name</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Adler, P.</td>
<td>Hoag, D.</td>
</tr>
<tr>
<td>Albert, M.</td>
<td>Hughes, E.</td>
</tr>
<tr>
<td>Bairnsfather, R.</td>
<td>Ireland, B.</td>
</tr>
<tr>
<td>Battin, R.</td>
<td>Isaacs, T.</td>
</tr>
<tr>
<td>Beals, C.</td>
<td>Johnson, L.B.</td>
</tr>
<tr>
<td>Blanchard, E.</td>
<td>Johnson, M.</td>
</tr>
<tr>
<td>Cherry, G.</td>
<td>Johnston, M.</td>
</tr>
<tr>
<td>Copps, E.</td>
<td>Kido, K.</td>
</tr>
<tr>
<td>Copps, S.</td>
<td>Kosmala, A.</td>
</tr>
<tr>
<td>Cox, G.</td>
<td>Kupfer, W.</td>
</tr>
<tr>
<td>Day, W.</td>
<td>Laats, A.</td>
</tr>
<tr>
<td>Denniston, E.</td>
<td>Larson, L.</td>
</tr>
<tr>
<td>Deutsch, S.</td>
<td>Larson, R.</td>
</tr>
<tr>
<td>DeWolf, D.</td>
<td>Lickly, D.</td>
</tr>
<tr>
<td>Edmonds, G.</td>
<td>Lones, R.</td>
</tr>
<tr>
<td>Eliassen, S.</td>
<td>Marscher, W.</td>
</tr>
<tr>
<td>Engle, A.</td>
<td>Martin, F.</td>
</tr>
<tr>
<td>Fagin, P.</td>
<td>McOuat, H.</td>
</tr>
<tr>
<td>Felleman, P.</td>
<td>McKern, R.</td>
</tr>
<tr>
<td>Fleming, J.</td>
<td>Megna, V.</td>
</tr>
<tr>
<td>Gediman, L.</td>
<td>Millard, D.</td>
</tr>
<tr>
<td>Glick, K.</td>
<td>Miller, J.E.</td>
</tr>
<tr>
<td>Goldberger, S.</td>
<td>Miller, J.S.</td>
</tr>
<tr>
<td>Goodwin, K.</td>
<td>Mimno, P.</td>
</tr>
<tr>
<td>Grace, E.</td>
<td>Morse, J.</td>
</tr>
<tr>
<td>Greene, K.</td>
<td>Nevins, J.</td>
</tr>
<tr>
<td>Haas, J.</td>
<td>O'Connell, J.</td>
</tr>
<tr>
<td>Hamilton, M.</td>
<td>Ostanek, W.</td>
</tr>
<tr>
<td>Haslam, R.</td>
<td>Parr, T.</td>
</tr>
<tr>
<td>Heinemann, P.</td>
<td>Philliou, P.</td>
</tr>
<tr>
<td>Henize, J.</td>
<td>Pu, C.</td>
</tr>
</tbody>
</table>
MIT Instrumentation Laboratory
c/o North American Rockwell, Inc.
Space and Information Division
12214 Lakewood Boulevard
Downey, California 90241
Attn: Mr. Thomas A. Hemker

MIT Instrumentation Laboratory
G&N Systems Laboratory
c/o Grumman Aircraft Engineering Corp.
LM Project - Plant 25
Bethpage, Long Island, New York
Attn: Mr. James A. Hand

MIT Instrumentation Laboratory
P.O. Box 21023
Kennedy Space Center, Florida 32815
Attn: Mr. George Silver

MIT Instrumentation Laboratory
Code EG/MIT Building 16
NASA Manned Spacecraft Center
Houston, Texas 77058
Attn: Mr. Thomas Lawton

NASA MSC HW
Building M7-409
Kennedy Space Center, Florida 32815
Attn: Mr. Frank Hughes

Mr. A. Metzger (NASA/RASPO at MIT/IL.)

AC Electronics Division
General Motors Corporation
Milwaukee, Wisconsin
Attn: Mr. J. Stridde, Dept. 32-31
Attn: Mr. Reino Karell

Kollsman Instrument Corporation
575 Underhill Boulevard
Syosset, Long Island
Attn: Mr. F. McCoy

Raytheon Company
Boston Post Road
Sudbury, Massachusetts 01776
Attn: Mr. J. Shrmack

NASA/RASPO/National Aeronautics and Space Administration
NAR Resident Apollo Spacecraft Program Office
North American Rockwell, Inc.
Space and Information Systems Division
12214 Lakewood Boulevard
Downey, California

NASA/KSC National Aeronautics and Space Administration
John F. Kennedy Space Center
J. F. Kennedy Space Center, Florida 32899
Attn: Technical Document Control Office
NASA/RASPO
NASA Dayton Beach Operation
P.O. Box 2500
Daytona Beach, Florida 32015
Attn: Mr. A. S. Lyman
(1)

NASA/HDQ
NASA Headquarters
600 Independence Avenue SW
Washington, D.C. 20546
Attn: MAP-2
Attn: Mission Director, Code MA
Attn: Robert Aller, Code MAO
(4)

NASA/LEWIS
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio
Attn: Library
(2)

NASA/FRC
National Aeronautics and Space Administration
Flight Research Center
Edwards AFB, California
Attn: Research Library
(1)

NASA/LRC
National Aeronautics and Space Administration
Langley Research Center
Langley AFB, Virginia
Attn: Mr. A. T. Mattson
(2)

NASA/GSFC
National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland
Attn: Mr. Paul Pashby, Code 813
(2)

GAEC
Grumman Aircraft Engineering Corporation
Bethpage, Long Island, New York
Attn: Mr. J. Marino
Mr. R. Pratt
(1)

NAR
North American Rockwell Inc.
Space and Information Systems Division
12214 Lakewood Boulevard
Downey, California 90241
Attn: Apollo Data Requirements
Dept. 096-340
Building 3, CA 99
(1 + IR)

D-3
NASA/RASPO
GAEC
National Aeronautics and Space Administration
Resident Apollo Spacecraft Program Officer
Grumman Aircraft Engineering Corporation
Bethpage, Long Island, New York
(1)

NASA/RASPO
ACED
National Aeronautics and Space Administration
Resident Apollo Spacecraft Program Officer
AC Electronics Division
General Motors Corporation
Milwaukee, Wisconsin 53201
Attn: Mr. W. Swingle
(1)

NASA/WSMR
National Aeronautics and Space Administration
Post Office Drawer MM
Las Cruces, New Mexico
Attn: RH4 Documentation
(2)

NASA/MSFC:
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, Alabama
Attn: J. Mack R-ASTR-5
H. Ledford R-AERO-P
L. McNair R-AERO-P
T. Teifer R-AERO-DA
E. Deaton R-AERO-DA
J. Cremin R-AERO-DAP
L. Stone R-AERO-F
C. Hagood R-AERO-F
O. Hardage R-AERO-FM
F. Moore R-ASTR-N
S. Seltzer R-ASTR-NG
H. Hosenthien R-ASTR-F
A. McNair I-MO-R
D. Germany I-I/IB-E
R. Barraza I-V-E
W. Chubb R-ASTR/NG
J. McCullough I-VE/T
(1)
(2)
(1)
(1)
(1)
(1)
(1)
(5)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

NASA/MSC
National Aeronautics and Space Administration
Manned Spacecraft Center
Apollo Document Control Group (PA 2)
Houston, Texas 77058
Attn: A. Alber, FS5 (letter of transmittal only)
(280 + (2R))

BELLCOMM:
Bellcomm, Inc.
1100 17th Street N.W.
Washington, D.C. 20036
Attn: Info. Analysis Section
(6)

LINK:
LINK Group, GSI SIMCOM
1740 A NASA Boulevard
Houston, Texas 77058
Attn: Mr. D. Klingbell
(3)

TRW:
Gilbert H. Friedman
Building 82 Rm 2067
TRW System Group
One Space Park
Redondo Beach, California 90278
(5)