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Computers are used more extensively on the Space Transportation 
System (STS) than on any previous aircraft or spacecraft. In conven- 
tional aircraft, mechanical linkages and cables connect pilot controls, 
such as the rudder pedals and stick, to hydraulic actuators at the con- 
trol surfaces. However, the Shuttle contains a fully digital fly-by-wire 
avionics system. All connections are electrical and are routed through 
computers. To give the spacecraft more autonomy, system manage- 
ment functions (fuel levels, life support, etc.), handled on the ground 
during previous flight programs, are monitored on board. Software 
can be adjusted to suit increasingly complex and varied payloads. 
Subsystems, like the main engines,that had no computer assistance be- 
fore use them for performance improvement. And, as in Gemini and 
Apollo, guidance and navigation tasks are accomplished on the Shut- 
tle with computers. All these functions, especially flight control, are 
critical to mission success; therefore, the computers performing the 
tasks must be made fail-safe by using redundancy. Meeting these re- 
quirements has resulted in one of the most complex software systems 
ever produced and a computer network within the spacecraft with 
more powerful hardware than many ground-based computer centers in 
the mid-1960s. 

The major differences between the Shuttle computer system and 
the systems used on Gemini and Apollo were the choice of an "off- 
the-shelf" main computer instead of a custom-made machine and the 
pervasiveness of the system within the spacecraft, since the main 
computers are the heart of any true avionics system. Avionics 
(aviation plus electronics) grew in the 1950s and 1960s as electronic 
devices, especially digital devices, replaced mechanical or analog 
equipment in aircraft. These digital devices were combined into a 
coherent system, rather than isolated in function and location within 
the aircraft. Several modern military airplanes have applied this con- 
cept to varying degrees. The FB- 11 1, an Air Force tactical bomber, 
has a complex avionics system that Rockwell International built just 
before it was awarded the Shuttle contract1; the F-15 fighter used an 
Aq-1 computer in its system. A repackaged version of the F-15's 
computer became the AP-101 used in the shuttle*. However, in no 
aircraft has the Shuttle's avionics system been matched as yet. For in- 
stance, its main computers have to interconnect with other computers 
in subsystems, such as the controllers on each main engine, whereas 
most aircraft systems are centered on a single set of machines. 

Since the Shuttle is completely dependent on the success of its 
avionics system, each component must be made failure proof. The 
method chosen to ensure this is absolute redundancy, often to a depth 
of four duplicate devices. Managing this level of redundancy became 
a large problem in itself. 

Another result of the pervasive avionics system is that the fre- 
quency and sophistication of the crew interaction with the computers 
exceeds any previous manned space program. A large portion of the 
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Figure 4-1. The first launch of the Shuttle Challenger, one of a fleet of the most 
computationally intensive spacecraft ever built. (NASA photo) 
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software is directed at easing the necessary commanding of the com- 
puters. In general, software development for the Shuttle has far out- 
stripped any previous NASA ground or flight system in effort and 
cost. The combination of requirements forced the Agency to pioneer 
techniques in digital avionics, redundancy management, computer in- 
terconnection, and real-time software development. 

EVOLUTION OF THE SHUTTLE COMPUTER SYSTEM 

Planning for the STS began in the late 1960s, before the first 
moon landing. Yet, the concept of a winged, reusable spacecraft went 
back at least to World War 11, when the Germans designed a sub- 
orbital bomber that would "skip" along the upper atmosphere, drop- 
ping bombs at low points in its flight path. In America in the late 
1940's, Wernher von Braun, who transported Germany's rocket 
knowhow to the U.S. Army, proposed a new design that became 
familiar to millions in the pre-Sputnik era because Walt Disney 
Studios popularized it in a series of animated television programs 
about spaceflight. It consisted of a huge booster with dozens of 
upgraded V-2 engines in the first stage, many more in the second, and 
a single-engine third stage, topped with a S huttle-like, delta-winged 
manned spacecraft. 

Because the only reusable part of the von Braun rocket was the 
final stage, other designers proposed in its place a one-piece shuttle 
consisting of a very large aerospacecraft that was intended to fly on 
turbojets or ramjets in the atmosphere before shifting to rocket power 
when the atmospheric oxygen ran out. Once it returned from orbit, it 
would fly again under jet power. However, the first version of the 
reusable spacecraft to actually begin development was the Air Force 
Dyna-Soar, which had a lifting body orbital vehicle atop a Titan III 
booster. That project died in the mid-l960s, just before NASA an- 
nounced a compromise design of desirable features: the expensive 
components (engines, solid rocket shells, the orbiter) to be reusable; 
the relatively inexpensive component, the external fuel tank, to be ex- 
pendable; the orbiter to glide to an unpowered landing3. 

The computer system inside the Shuttle vehicle underwent an 
evolution as well. NASA gained enough experience with on-board 
computers during the Gemini and Apollo programs to have a fair idea 
of what it wanted in the Shuttle. Drawing on this experience, a group 
of experts on spaceborne computer systems from the Jet Propulsion 
Laboratory, the Draper Laboratory (renamed during its Apollo efforts) 
at MIT, and elsewhere collaborated on an internal NASA publication 
that was a guide to help the designer of embedded spacecraft 
computers4. Individuals contributed additional papers and memos. 
Preliminary design proposals by potential contractors also influenced 
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the eventual computer system. In one, Rockwell International teamed 
up with IBM to submit a system5. Previously, in 1967, the Manned 
Spacecraft Center contracted with IBM for a conceptual study of 
spaceborne computers6 and two Huntsville IBM engineers did a 
shuttle-specific study in 1970’. Coupled with IBM Gemini and Saturn 
experience, the Rockwell/IBM team was hard to beat for technical ex- 
pertise. NASA also sought further advice from Draper, as it was still 
heavily involved in Apollo8. These varied contributions shaped the 
final form of the Shuttle’s computer system. 

There were two aspects of the computer design problem: func- 
tions and components. Previous manned programs used computers 
only for guidance, navigation, and attitude control, but a number of 
factors in spacecraft design caused the list of computable functions to 
increase. A 1967 study projected that post-Apollo computing needs 
would be shaped by more complex spacecraft equipment, longer 
operational periods, and increased crew sizes9. The study suggested 
three approaches to handling the increased computer requirements. 
The first assigned a small, special-purpose computer to each task, dis- 
tributing the processes so that the failure of one computer would not 
threaten other spacecraft systems. The second approach proposed a 
central computer with time-sharing capability, thus extending the con- 
cepts implemented in Gemini and Apollo. Finally, the study recom- 
mended several processors with a common memory (a combination of 
the features of the first two ideas). This last concept was so popular 
that by 1971 at least four multiprocessor systems were being 
developed for NASA’s uselo.* The greater appeal of the multiproces- 
sors, and the production of the Skylab dual computer system, replaced 
the idea of using simplex computer systems that could not be counted 
on to be 100% reliable on long-duration flights. 

On a more detailed level than the overall configuration, experts 
also realized that increased speed and capacity were needed to effec- 
tively handle the greater number of assigned tasks1 I. One engineer 
suggested that a processor 50% to 100% more powerful than first in- 
dicated be procured12. This would provide insurance against the 
capacity problems encountered in Gemini and Apollo and be cheaper 
than software modifications later. A further requirement for a new 
manned spacecraft computer was that it be capable of floating-point 
arithmetic. Previous computers were fixed-point designs, so scaling 
of the calculations had to be written into the software. Thirty percent 
of the Apollo software development effort was spent on scaling13. 

* These were: EXAM (Experimental Aerospace Multiprocessor) at Johnson 
Space Center, the Advanced Control, Guidance, and Navigation Computer at 
MIT, SUMC (Space Ultrareliable Modular Computer) at Marshall Space Flight 
Center, and PULPP (Parallel Ultra Low Power Processor) at the Goddard Space 
might Center. 
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One holdover component from the Gemini, Apollo, and Skylab 
computers remained: core memory. Mostly replaced by semiconduc- 
tor memories on IC chips, core memory was made up of doughnut- 
shaped ferrite rings. In the mid-l960s, core memories were deter- 
mined to be the best choice for manned flight for the indefinite future, 
because of their reliability and n~nvolatilityl~. Over 2,000 core 
memories flew in aircraft or spacecraft by 197815. The NASA design 
guide for spacecraft computers recommended use of core memory and 
that it be large enough to hold all programs necessary for a missionl6. 
That way, in emergencies, there would be no delay waiting for 
programs to be loaded, as in Gemini 8, and the memory could be 
powered down when unneeded without losing data. 

By 1970, several concepts to be used in the Shuttle were chosen. 
One of these was the use of buses, which Johnson Space Center's 
Robert Gardiner considered for moving large amounts of datal'. In- 
stead of having a separate discrete wire for every electronic connec- 
tion, components would send messages on a small number of buses on 
a time-shared basis. Such buses were already in use in cabling from 
the launch center to rockets on the launch pads. Buses were also being 
considered for military and commercial aircraft, which were becom- 
ing quite dependent on electronics. Additionally, there would be two 
redundant computer systems- though no decision had been made as 
to how the systems would communicate. In the LEM, the PGNCS had 
an active backup in the Abort Guidance System (AGS). This was not 
true redundancy in that the AGS contained a computer with less 
capacity than the AGC, and so could not complete a mission, just 
safely abort one. True redundancy, however, meant that each com- 
puter system would be capable of doing all mission functions. 

Redundancy grew out of NASA's desire to be able to complete a 
mission even after a failure. In fact, early studies for the Shuttle predi- 
cated the concept of "fail operational/fail operational/fail-safe.'' One 
failure and the flight can continue, but two failures and the flight must 
be aborted because the next failure reduces the redundancy to three 
machines, the minimum necessary for voting. In the 1970 computer 
arrangement, one special-purpose computer handled flight control 
functions (the fly-by-wire system), and another general-purpose com- 
puter performed guidance, navigation, and data management func- 
tions. These two computers had twins and the entire group of four was 
duplicated to provide the desired layers of redundancy 8. 

More concrete proposals came in 197 1. Draper presented a couple 
of plans, one fairly conservative, the other more ambitious. The less 
expensive version used two sets of two AGCs. These models of the 
AGC would contain 32K of erasable memory and magnetic tape mass 
memory instead of the core rope in the original19. Redundancy would 
be provided by a full backup that would be automatically switched 
into action upon failure of the primary (an idea later abandoned since 
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a software fault could cause a premature switch-over)20. Draper's 
more expensive, but more robust, plan proposed a "layered collabora- 
tive computer system," to provide If significant total, modest individual 
computing powerff21. A relatively large multiprocessor was at the 
heart of this system, with local processors at the subsystem level. This 
had the potential effect of insulating the central computer from sub- 
system changes. 

Unlike Gemini and Apollo, NASA wanted an off-the-shelf com- 
puter system for the Shuttle. If "space rating" a s stem involved a 
stricter set of requirements than a military standardJ2, starting with a 
military-rated computer made the next step in the certification process 
a lot cheaper. Five systems were actively considered in the early 
1970s: The IBM 4Pi AP-1, the Autonetics D232, the Control Data 
Corporation Alpha, the Raytheon RAC-251, and the Honeywell 
HDC-70123. The basic profile of the computer system evolved to the 
point where expectations included 32-bit word size for accurate cal- 
culations, at least 64K of memory, and microprogramming 
~ a p a b i l i t y ~ ~ .  Microprograms are called firmware and contain control 
programs otherwise realized as hardware. Firmware can be changed to 
match evolving requirements or circumstances. Thus, a computer 
could be adapted to a number of functions by revising its instruction 
set through microcoding. 

Despite the fact that Draper Laboratory favored the Autonetics 
machine, and a NASA engineer estimated that the load on the Shuttle 
computers would "be heavier than the 4Pi [could] support," the IBM 
machine was still chosenz5. The 4Pi AP-1's advantages lay in its his- 
tory and architecture. Already used in aircraft applications, it was also 
related to the 4Pi computers on Skylab, which were members of the 
same architectural family as the IBM System 360 mainframe series. 
Since the instruction set for the AP-1 and 360 were very similar, ex- 
perienced 360 programmers would need little retraining. Additionally, 
a number of software development tools existed for the AP-1 on the 
360. As in the other spacecraft computers, no compilers or other 
program development tools would be carried on-board. All flight 
programs were developed and tested in ground-based systems, with 
the binary object code of the programs loaded into the flight com- 
puter. Simulators and assemblers for the AP-1 ran on the 360, which 
could be used to produce code for the target machine. In both the 
Gemini and Apollo programs, such tools had to be developed from 
scratch and were expensive. 

One further aspect of the evolution of the Shuttle computer sys- 
tems is that previous manned spacecraft computers were programmed 
using assembly language or something close to that level. Assembly 
language is very powerful because use of memory and registers can be 
strictly controlled. But it is expensive to develop assembly language 
programs since doing the original coding and verifying that the 
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programs work properly involve extra care. These programs are nei- 
ther as readable nor as easily tested as programs written in FORTRAN 
or other higher-level computer languages. The delays and expense of 
the Apollo software development, along with the realization that the 
Shuttle software would be many times as complex, led NASA to en- 
courage development of a language that would be optimal for real- 
time computing. Estimates were that the software development cycle 
time for the Shuttle could be reduced 10% to 15% by using such a 
language26. 

The result was HAL/S, a high-level language that supports vector 
arithmetic and schedules tasks according to programmer-defined 
priority levels.** No other early 1970s language adequately provided 
either capability. Intermetrics, Inc., a Cambridge firm, wrote the com- 
piler for HAL. Ex-Draper Lab people who worked on the Apollo 
software formed the company in 196927. 

The proposal to use HAL met vigorous opposition from managers 
used to assembly language systems. Many employed the same ar- 
gument mounted against FORTRAN a decade earlier: The compiler 
would produce code significantly slower or with less efficiency than 
hand-coded assemblers. High-level languages are strictly for the con- 
venience of programmers. Machines still need their instructions 
delivered at the binary level. Thus, high-level languages use compilers 
that translate the language to the point where the machine receives in- 
structions in its own instruction set (excepting certain recently 
developed LISP machines, in which LISP is the native code). Com- 
pilers generally do not produce code as well as humans. They simply 
do it faster and more accurately. However, many engineers felt that 
optimization of flight code was more important than the gains of using 
a high-level language. To forestall possible criticism, Richard Parten, 
the first chief of Johnson's Spacecraft Software Division, ordered a 
series of benchmark tests. Parten had IBM pick its best assembly lan- 
guage programmers to code a set of test programs. The same functions 
were also written in HAL and then raced against each other. The run- 
ning times were sufficiently close to quiet objectors to high-level lan- 
guages on spacecraft (roughly a 10% to 15% performance 
difference)28. 

** The origins of the name of the language are unclear. Stanley Kubrick's clas- 
sic film 2001: A Space Odyssey (1968) was playing in theaters at about the time 
the language was being defined. A chief "character" in the film was a murderous 
computer named HAL. NASA officials deny any relationship between the names. 
John R. Garman of Johnson Space Center, one of the principals in Shuttle on- 
board software development, said it may have come from a fellow involved in the 
early development whose name was Hal. Others suggest it is an acronym for 
Higher Avionics Language. For a full description of the language and sample 
programs, see Appendix 11. 
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By 1973, work could begin on the software necessary for the 
shuttle, as hardware decisions were complete. Conceptually, the shut- 
tle software and hardware came to be known as the Data Processing 
System (DPS). 

THE DPS HARDWARE CONFIGURATION 

The DPS hardware in the shuttle avionics system consists of four 
major components: general-purpose computers, the data bus network, 
the multifunction cathode ray tube display system, and the mass 
memory units. Each is a substantial improvement over similar sys- 
tems in any previous spacecraft. Together, they are a model for future 
avionics developments. 

General-Purpose Computers 

NASA uses five general-purpose computers in the Shuttle. Each 
one is an IBM AP-101 central processing unit (CPU) coupled with a 
custom-built input/output processor (IOP). The AP-101 has the same 
type of registers and architecture used in the IBM System 360 and 
throughout the 4Pi series29. IBM announced the 4Pi in 1966, so by the 
early 1970s, when Shuttle procurement was complete, the machine 
had had extensive operational use30. The AP-101 version, which is an 
upgraded AP-1, has since been used in the B-52 and B-1B military 
aircraft and the F-8 digital fly-by-wire experimental aircraft. The 
central processor in each case is the same, but the IOP is adapted to 
the particular application. 

Although one of the reasons for choosing the AP-101 was its 
familiar instruction set, some modifications were necessary for the 
Shuttle version. Since the execution of instructions is dependent on 
microcode, rather than hardware only, the instruction set could be 
changed somewhat. Microcode is a set of primitives that can be com- 
bined to create new logic paths in the hardware. The AP-101 has room 
for up to 2,048 microinstructions, 48 bits in length3 l. 
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Figure 4-2. A block diagram of the hardware that makes up the Shuttle Data 
Processing System. The fifth computer is the Backup Flight System computer. 
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~ ~~ ~~~~ 

Box 4-1: IBM AP-IO1 Central Processor and Memory Hardware 
Shuttle computers make extensive use of standard ICs. The AP-101 

is built using transistor-transistor logic (l’TL) semiconductor circuits as 
the basic building block. The l T L  gates are arranged in medium-scale 
integration (MSI) and large-scale integration (LSI)  configuration^^^. The 
circuits are on boards that can be interchanged as units. 

The AP-IO1 uses a variety of word sizes. Instructions can be either 
16 or 32 bits in length. Fixed-point arithmetic, done using fractional 
numbers stored in two’s complement form, also uses 16- and 32-bit 
lengths. Floating-point arithmetic is done with 32-, 40- and 64-bit 
words, although the latter are limited to addition and s ~ b t r a c t i o n ~ ~ .  In- 
structions using floating-point take longer to execute than fixed-point 
arithmetic, and adding is still faster than multiplying; but average speed 
for the machine is 480,000 instructions per second, compared with 7,000 
instructions per second in the Gemini computer34. 

The CPU registers are in three groups. Two sets of eight 32-bit 
registers are available for fixed-point arithmetic. One set of eight 32-bit 
registers is for floating-point  operation^^^. Semiconductor memories are 
used in the registers instead of discrete components. As a result, the 
registers are faster than those used on Gemini and Apollo and, since they 
are available in large sets, can be used to store intermediate results of 
calculations without having to access core memory. Thus, processing is 
accelerated and achieves the performance noted above36. 

A program status word (PSW), 64 bits in length, is used to help 
control interrupts. The PSW contains information such as the next in- 
struction address, current condition code, and any system masks for 
interrupts3’. It has to be updated every instruction to stay current38. 
Since the AP-101 allows 61 different interrupt conditions divided into 20 
priority levels, it is necessary to have an accurate indication of where a 
program left off when i n t e r r u ~ t e d ~ ~ .  At any given time, several programs 
are likely to be in a suspended state. 

The processor has more than one level of addressing. The common 
16-bit address can only directly address 64K words, which was the 
original memory size of the AP-101. The addressing is extended by 
replacing the highest order bit with 4 bits from the program status word 
that indicate which sector of memory to access40. This is similar to the 
scheme used in the AGC when its memory had to be expanded. This 
configuration allows 131,072 full words (32-bit words) to be addressed. 
The architecture permits addressing up to 262,144 full words, so memory 
can be expanded without affecting the processor’s design41. 
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Box 4- 1 (Continued) 
Due to packaging considerations, the core memory is located partly 

in the central processor and partly in the IOP (they are boxed separately). 
However, it is still considered as a single unit for addressing and access. 
The entire memory is shared, not just the portion located in the in- 
dividual boxes. Originally, 40K of core were in the CPU and 24K in the 
IOP. The memory is organized into modules with 18-bit half words. 
These contain 16 bits of data, a parity bit, and a storage protect bit to 
prevent unintentional alteration of the data42. The original memory 
modules contained 8K half words, so 6 were needed in the IOP and 10 in 
the CPU to store 64K full words. Later memory expansion consisted of 
replacing the CPU memory modules with double-density modules, in 
which twice the cores are in the same size container as a single-density 
module43. So by the first flight, the Shuttle computer memories were 
104K words or 106,496 full words of 32 bits. The memory access time is 
400 nanoseconds, quite fast for core. 

The eventual Shuttle instruction set contained 154 instructions 
defined within that 2K memory. However, the expected advantages of 
the flexibility of microcoding, which influenced the decision to select 
the AP-101, were lessened by the fact that at least six of the new in- 
structions either did not work properly or performed insufficiently4. 
One NASA manager said that the microcoding was bungled by "the 
ones and zeroes artists" (referring to the binary numbered nature of 
microprograms) who apparently tried to do things the tricky way45. 

NASA tried to correct its tendency to underestimate memory size, 
but was disappointed again on the Shuttle program. One requirement 
for memory was that it be large enough to contain all the programs 
necessary for a mission. Therefore, memory estimates became a 
regular part of preliminary design studies. Most estimates in the 1969 
to 1971 period ranged around 28K words46. Rockwell International 
settled on 32K in its bid and won the contract partially because of that 
estimate4'. NASA, trying to save itself from later difficulties, bought 
64K of memory for each computer, hoping that doubling the estimate 
would be enough (despite memory increases in previous programs of 
several hundred percent)48. Unfortunately, the software grew to over 
700K, requiring not only more computer memory, but the addition of 
mass memory units to hold programs that would not fit into the ex- 
tended core. Parten said after this, "I don't know how you ensure 
proper memory size ahead of time, unless you're incredibly lucky"49. 

From the standpoint of a spacecraft designer worried about power 
requirements, an interesting feature of the AP-101 memory is that 
only the module currently being accessed is at full power. If a 
memory module is used, it remains at full power €or 20 microseconds. 
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If no further accesses are made in that interval, it automatically goes 
to medium power. If the entire computer is in standby mode, it goes to 
low power. An estimated 136 watts are saved by doing this 
switching50. 

The memory can be altered in flight. The ground can uplink 
bursts of 64 16-bit halfwords at a time, which can replace data already 
in the specified addresses. The crew can also change up to six 32-bit 
words simultaneously by using their displays and keyboards. 
However, those changes must be hand keyed in hexadecimal. 

The Shuttle's AP-101 contains one of the most extensive sets of 
self-testing hardware and software ever used in a flight computer. Its 
self-test hardware resides in the BITE, or built-in test equipment. 
When this is coupled with the self-test software, 95% of hardware 
failures can be detected by the machine itself51, whereas the other 5% 
and potential software failures require the use of redundancy. 

As evidenced by the component description given here, the IBM 
AP-101 is a fairly common computer architecture, easily understand- 
able and programmable by anyone familiar with IBM's large commer- 
cial mainframes. The IOPS, bus system, and displays contain the 
characteristics that make the Shuttle DPS unique. 

The IOPs and the Bus System 

It is difficult to discuss the Shuttle's IOPs without also talking 
about the data bus network, because the former are designed to 
manage the latter. All subsystems on the spacecraft are connected 
redundantly to at least a pair of data buses. There are 24 of these 
buses, and the subsystems share them, using multiplexers to control 
the sharing. Eight of the 24 are "flight-critical data buses" that help fly 
the vehicle; 5 are used for intercomputer communication among the 
five general-purpose computers; 4 connect to the four display units; 2 
run to the twin mass memory units; 2 more are "launch data buses," 
and connect to the Launch Processing System; 2 are used for 
payloads, and the final pair for in~trumentation~~. Each bus is in- 
dividually controlled by a microprogrammed processor, essentially a 
small special-purpose computer, called a bus control element (BCE). 
The BCE can access memory and execute independent programs53. A 
twenty-fifth computer, the Master Sequence Controller, is used to 
control 1/0 flow on the 24 B C E S ~ ~ .  Thus, each IOP contains 25 dedi- 
cated computers. In addition, the IOP itself is basically a programm- 
able processor with multiple functions. It shares main memory with 
the central processor. If a program affecting the IOP is initiated by the 
central processor, a direct memory access channel is opened to speed 
up reading core. That, however, creates contention for the memory 
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with the central processor and may have the effect of actually slowing 
down the system as a whole? 

One reason an IOP is needed is that the Shuttle computers trans- 
fer data internally in parallel along 18-bit buses. This means that one 
half word and its associated parity bit are moved from memory to the 
operation registers and back again all at once. However, data are 
transferred from orbiter subsystems to the IOP in serial form, one bit 
at a time. Of course, the serial data are at a high rate (1 megahertz), so 
transfer speed is not a concern. The conversion of serial data to paral- 
lel data is the function of the Multiplexer Interface Adapters in the 
IOP56. The Shuttle DPS also has 16 multiplexer/demultiplexers that 
convert parallel data to serial for output to the buses57. 

Input and output to each computer is ultimately controlled in two 
modes: command and listen. In command mode (CM), signals sent 
from the host processor to subsystems connected to a bus controlled 
by a commanding BCE will actually effect the commands. In listen 
mode, the subsystems will ignore the command signals. In both cases 
input to the computer from any bus is listened to, but the computer's 
orders are obeyed only by the systems on the buses for which it is the 
commander. This moding capability means that a single computer can 
be assigned a set of buses different from another computer, thus 
spreading out the responsibilities and protecting against failure. It also 
means that each computer receives all input data all the time, so that it 
can take over from a failed computer immediately. This is especially 
important to the backup flight system. The set of controlled buses is 
called a "string." A typical string for a single computer might be a pair 
of flight critical buses, one intercomputer bus (always), a display bus, 
and a bus from the mass memory unit (MMU), payload, launch, and 
instrumentation group. The strings can be reconfigured by the crew in 
flight, which is done periodically as missions proceed through various 
phases. 

Display Electronics 

The Shuttle's display system, built by the Norden Division of 
United Technologies Corporation, is the most complex ever used on a 
flying machine and contains computers of its own. For the first time in 
a spacecraft, cathode ray tubes (CRTs) are used as the primary display 
medium, although a wealth of warning lights that supplement the dis- 
plays still dot the cockpit. The CRTs hold 26 lines of 5 1 characters on 
a 5- by 7-inch screen. That screen size is fairly common on portable 
computers. However, the number of characters per line is smaller (51 
vs. the more common 80) and the number of lines larger (26 vs. the 
usual 24). The net effect is that the individual characters appear 
slightly larger on the Shuttle's screens, necessary because although 
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the user of a portable computer is usually about 16 inches from the 
screen, on the Shuttle the distance between user and screen is well 
over 2 feet. Information on the Shuttle’s screens appears green on 
black, and characters can be selectively highlighted. Three of these 
screens are mounted in the forward cockpit between the pilots. A 
fourth is aft at the mission specialist station. Keyboards, built by 
Ebonex, are used for crew input. Two are between the pilots, with a 
third adjacent to the mission specialist’s CRT. 

Displays placed on the CRTs are controlled by a special-purpose 
computer with a 16-bit word size and 8K of memory. This computer 
provides display control and can create circles, lines, intensity 
changes (highlighting), and flashing messages. The display software is 
stored on the MMUs until the computer is powered up. The CRT and 
its associated processor is referred to as the display electronics unit 
( DEU)58. 

Mass Memory Unit: A Late Addition 

The final component of the Shuttle’s DPS hardware is the mass 
memory unit (MMU). Originally acquired only to provide initial load- 
ing of the orbiter’s computers, the MMU, built by Odetics, Inc., has 
been used extensively to help resolve the memory growth problem. 
Two of these units are installed on the orbiter, each capable of con- 
taining 8 million 16-bit words, enough for three times the Shuttle 
software. The tape can be addressed in 512 word blocks, and the crew 
can alter its contents in flight using a special display59. The MMU 
stores all the Primary Avionics Software System and all the software 
for the Backup Flight System, the DEUs, and the engine controllers. 
Thus, the Shuttle continues the same computer/mass memory con- 
figuration as the Gemini spacecraft. 

This complex network of computer hardware on the orbiter has 
many possible points of failure. Also, the 700K of flight software may 
contain undiscovered bugs that could emerge at critical mission times, 
and self-testing might not be sufficient to protect the spacecraft from 
such failures. Other schemes for preventing a fatal failure need to be 
developed if the Shuttle is to fly with the confidence of its crew, pas- 
sengers, and potential paying customers. Exactly what those schemes 
would be has occupied many researchers for several years. 
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COMPUTER SYNCHRONIZATION 
AND REDUNDANCY MANAGEMENT 

One key goal shaping the design of the Shuttle was "autonomy." 
Multiple missions might be in space at the same time, and large crews, 
many with nonpilot passengers, were to travel in space in craft much 
more self-sufficient than ever before. These circumstances, the desire 
for swift turnaround time between launches, and the need to sustain 
mission success through several levels of component failure meant 
that the Shuttle had to incorporate a large measure of fault tolerance in 
its design. As a result, NASA could do what would have been un- 
thinkable 20 years earlier: put men on the Shuttle'sfirsr test flight. 
The key factor in enabling NASA to take such a risk was the redun- 
dancy built into the orbiter60. 

Fault tolerance on the Shuttle is achieved through a combination 
of redundancy and backup. Its five general-purpose computers have 
reliability through redundancy, rather than the expensive quality con- 
trol employed in the Apollo program6I. Four of the computers, each 
loaded with identical software, operate in what is termed the 
"redundant set" during critical mission phases such as ascent and de- 
scent. The fifth, since it only contains software to accomplish a "no 
frills" ascent and descent, is a backup. The four actuators that drive 
the hydraulics at each of the aerodynamic surfaces are also redundant, 
as are the pairs of computers that control each of the three main en- 
gines. 

Management of redundancy raised several difficult questions. 
How are failures detected and certified? Should the system be static or 
dynamic? Should the computers run separately without communica- 
tion and be used to replace the primary computer one by one as 
failures occur? Could the computers, if running together, stay in step? 
Should redundancy management of the actuators be at the computer or 
subsystem level? Fortunately, NASA experience on other aircraft and 
spacecraft programs could provide data for making the final decisions. 

Redundant Precursors 

Several systems that incorporated redundancy preceded the Shut- 
tle. The computer used in the Saturn booster instrument unit that con- 
tained the rocket's guidance system used triple modular redundant 
(TMR) circuits, which means that there was one computer with redun- 
dant components. Disadvantages to using such circuits in larger com- 



puters are that they are expensive to produce, and an event such as the 
explosion on Apollo 13 could damage enough of the computer that it 
ceases to function. By spreading redundancy among several simplex 
circuit computers scattered in various parts of the spacecraft, the ef- 
fects of such catastrophic failures are minimized6*. 

Skylab’s two computers each could perform all the functions re- 
quired on its mission. If one failed, the other would automatically take 
over, but both computers were not up and running simultaneously. 
The computer taking over would have to find out where the other had 
left off by using the contents of the 64-bit transfer register located in 
the common section built with TMR circuits. The Skylab computers 
were able to have such a relatively leisurely switch-over system be- 
cause they were not responsible for navigation or high-frequency 
flight control functions. If there were a failure, it would be possible 
for the Skylab to drift in its attitude without serious danger; the Shut- 
tle would have no such margin of safety. 

Figure 4-3. The F-8 aircraft that proved the redundant set configuration planned 
for the Shuttle would work. (NASA photo ECN-6988) 

The need for the redundant computers on the Shuttle to process 
information simultaneously, while still staying closely synchronized 
for rapid switch-over, seriously challenged the designers of the sys- 
tem. Such a close synchronization between computers had not been 
done before, and its feasibility would have to be proven before NASA 
could make a full commitment to a particular design. Most of the 
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necessary confidence resulted from a digital fly-by-wire testing 
program NASA started at the Dryden Flight Research Center in the 
early 1 9 7 0 ~ ~ ~ .  The first computer used in the F-8 “Crusader” aircraft 
chosen for the program was a surplus AGC in simplex, with an 
electronic analog backup. Later, the project engineers wanted a duplex 
system using a more advanced computer. Johnson Space Center 
avionics people noted the similarities between the digital fly-by-wire 
program and the Shuttle. Dr. Kenneth Cox of JSC suggested that 
Dryden go with a triplex system to move beyond simple one-for-one 
redundancy. By coordinating procurement, NASA outfitted both the 
F-8 aircraft and the Shuttle with AP-101 processors. Draper 
Laboratory produced software for the F-8, and its flight tests proved 
the feasibility of computers operating in synchronization, as it suf- 
fered several single point computer failures but successfully flew on 
without loss of control. This flight program did much to convince 
NASA of the viability of the synchronization and redundancy 
management schemes developed for the Shuttle. 

How Many Computers? 

One key question in redundancy planning is how many computers 
are required to achieve the level of safety desired. Using the concept 
of fail operational/fail operational/fail-safe, five computers are 
needed. If one fails, normal operations are still maintained. Two 
failures result in a fail-safe situation, since the three remaining prevent 
the feared standoff possible in dual computer systems (one is wrong, 
but which?). Due to cost considerations of both equipment and time, 
NASA decided to lower the requirement to fail operational/fail-safe, 
which allowed the number of computers to be reduced to four. Since 
five were already procured and designed into the system, the fifth 
computer evolved into a backup system, providing reduced but ade- 
quate functions for both ascent and descent in a single memory load. 
NASA’s decision to use four computers has a basis in reliability 
projections done for fly-by-wire aircraft. Triplex computer system 
failures were expected to cause loss of aircraft three times in a million 
flights, whereas quadruple computer system failures would cause loss 
of aircraft only four times in a thousand million flights*. 

At first the backup flight system computer was not considered to 
be a permanent fixture. When safety level requirements were lowered, 
some IBM and NASA people expected the fifth computer to be 
removed after the Approach and Landing Test phase of the Shuttle 
program and certainly after the flight test phase (STS-1 through 4)65. 
However, the utility of the backup system as insurance against a 
generic software error in the primary system outweighed considera- 
tions of the savings in weight, power, and complexity to be made by 



COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 103 

Ll 
aJ 
U 
J 
P 
E 
0 
V 
!-I 

aJ 
L) 

C 
U 

Figure 4-4. The intercommunication system used in the F-8 triplex computer 
system. 
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eliminating it@. In fact, as the first Shuttle flights approached, Arnold 
Aldrich, Director of the Shuttle Office at Johnson Space Center, cir- 
culated a memo arguing for a sixth computer to be carried along as a 
spare67! He pointed out that since 90% of avionics component 
failures were expected to be computer failures and that since a min- 
imum of three computers and the backup should exist for a nominal 
re-entry, aborts would then have to take place after one failure. By 
carrying a spare computer preloaded with the entry software, the 
primary system could be brought back to full strength. The sixth com- 
puter was indeed carried on the first few flights. In contrast with this 
"suspenders and belt" approach, John R. Garman of the Johnson 
Space Center Spacecraft Software Division said that "we probably did 
more damage to the system as a whole by putting in the backup"68. 
He felt that the institution of the backup took much of the pressure off 
the developers of the primary system. No longer was their software 
solely responsible for survival of the crew. Also, integrating the 
priority-interrupt-driven operating system of the primary computers 
with the time-slice system of the backup caused compromises to be 
made in the primary. 

Synchronization 

Computer synchronization proved to be the most difficult task in 
producing the Shuttle's avionics. Synchronizing redundant computers 
and comparing their current states is the best way to decide if a failure 
has occurred. There are two types of synchronization used by the 
Shuttle's computers in determining which of them has failed: one for 
the redundant set of computers established for ascent to orbit and de- 
scent from orbit, and one for synchronizing a common set while in or- 
bit. It took several years in the early 1970s to discover a way to ac- 
complish these two synchronizations. 

. The essence of Shuttle redundancy is that each computer in the 
redundant set could do all the functions necessary at a particular mis- 
sion phase. For true redundancy to take place, all computers must lis- 
ten to all traffic on all buses, even though they might be commanding 
just a few. That way they know about all the data generated in the cur- 
rent phase. They must also be processing that data at the same time 
the other computers do. If there is a failure, then the failed computer 
could drop out of the set without any functional degradation whatever. 
At the start, the Shuttle's designers thought it would be possible to run 
the redundant computers separately and then just compare answers 
periodically to make sure that the data and calculations matched69. As 
it turned out, small differences in the oscillators that acted as clocks 
within the computers caused the computers to get out of step fairly 
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quickly. The Spacecraft Software Division formed a committee, 
headed by Garman, made up of representatives from Johnson Space 
Center, Rockwell International, Draper Laboratory and IBM Corpora- 
tion, to study the problem caused by oscillator drift70. Draper’s people 
made the suggestion that the computers be synchronized at input and 
output points71. This concept was later expanded to also place 
synchronization points at process changes, when the system makes a 
transition from one software module to another. The decision to put in 
the synchronization points “settled everyone’s mind” on the issue7*. 

Intercomputer communication is what makes the Shuttle’s 
avionics system uniquely advanced over other forms of parallel com- 
puting. The software required for redundancy management uses just 
3K of memory and around 5% or 6% of each central processor’s 
resources, which is a good trade for the results obtained78. An increas- 
ing need for redundancy and fault tolerance in non-avionics systems 
such as banks, using automatic tellers and nationwide computer net- 
works, proves the usefulness of this system. But this type of 
synchronization is so little known or understood by people outside the 
Shuttle program that carryover applications will be delayed. 

One reason why the redundancy management software was able 
to be kept to a minimum is that NASA decided to move voting to the 
actuators, rather than to do it before commands are sent on buses. 
Each actuator is quadruple redundant. If a single computer fails, it 
continues to send commands to an actuator until the crew takes it out 
of the redundant set. Since the Shuttle’s other three computers are 
sending apparently correct commands to their actuators, the failed 
computer’s commands are physically out-votedc19. Theoretically, the 
only serious possibility is that three computers would fail simul- 
taneously, thus negating the effects of the voting. If that occurs, and if 
the proper warnings are given, the crew can then engage the backup 
system simply by pressing a button located on each of the forward 
rotational hand controllers. 

Does the redundant set synchronization work? As described, the 
F-8 version, with redundancy management identical to the Shuttle, 
survived several in-flight computer failures without mishap. On the 
first Shuttle Approach and Landing Test flight, a computer failed just 
as the Enterprise was released from the Boeing 747 carrier; yet the 
landing was still successful. That incident did a lot to convince the 
astronaut pilots of the viability of the concept. 

Synchronization and redundancy together were the methods 
chosen to ensure the reliability of the Shuttle avionics hardware. With 
the key hardware problems solved, NASA turned to the task of 
specifying the most complex flight software ever conceived. 
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Box 4-2: Redundant Set Synchronization: Key to Reliability 

Synchronization of the redundant set works like this: When the 
software accepts an input, delivers an output, or branches to a new 
process, it sends a 3-bit discrete signal on the intercomputer communica- 
tion (ICC) buses, then waits up to 4 milliseconds for similar discretes 
from the other computers to arrive. The discretes are coded for certain 
messages. For example, 010 means an 1/0 is complete without error, but 
011 means that an I/O is complete with error73. This allows more infor- 
mation other than just "here I amt' to be sent. If another computer either 
sends the wrong synchronization code, or is late the computer detecting 
either of these conditions concludes that the delinquent computer has 
failed, and refuses from then on to listen to it or acknowledge its 
presence. Under normal circumstances, all three good computers should 
have detected the single computer's error. The bad computer is an- 
nounced to the crew with warning lights, audio signals, and CRT mes- 
sages. The crew must purposely kill the power to the failed computer, as 
there is no provision for automatic powerdown. This prevents a generic 
software failure causing all the computers to be automatically shut off. 

This form of synchronization creates a tightly coupled group of 
computers constantly certifying that they are at the same place in the 
software. To certify that they are achieving the same solutions, a 
"sumword" is used. While computers are in a redundant set, a sumword 
is exchanged 6.25 times every second on the ICC buses74. A sumword 
typically consists of a 64 bits of data, usually the least significant bits of 
the last outputs to the solid rocket boosters, orbital maneuvering engines, 
main engines, body flap, speed brake, rudder, elevons, throttle, the sys- 
tem discretes, and the reaction control system75. If there are three 
straight miscomparisons of a sumword, the detecting computers declare 
the computer involved to be failed76. 

Both the 3-bit synchronization code and sumword comparison are 
characteristics of the redundant set operations. During noncritical m i s -  
sion phases such as on-orbit, the computers are reconfigured. Two might 
be left in the redundant set to handle guidance and navigation functions, 
such as maintaining the state vector. A third would run the systems 
management software that controls life support, power, and the payload. 
The fourth would be loaded with the descent software and powered 
down, or "freeze dried," to be instantly ready to descend in an emergency 
and to protect against a failure of the two MMUs. The fifth contains the 
backup flight system. This configuration of computers is not tightly 
coupled, as in the redundant set. All active computers, however, do con- 
tinue the 6.25/second exchange of sumwords, called the common set 
synchronizatior-177. 
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Figure 4-5. The various computer configurations used during a Shuttle mission. 
The names of the operational sequences loaded into the machines are shown. 
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DEVELOPING SOFTWARE FOR THE SPACE SHUTTLE 

During 1973 and 1974 the first requirements began to be 
specified for what has become one of the most interesting software 
systems ever designed. It was obvious from the very beginning that 
developing the Shuttle’s software would be a complicated job. Even 
though NASA engineers estimated the size of the flight software to be 
smaller than that on Apollo, the ubiquitous functions of the Shuttle 
computers meant that no one group of engineers and no one company 
could do the software on its own. This increased the size of the task 
because of the communication necessary between the working groups. 
It also increased the complexity of a spacecraft already made complex 
by flight requirements and redundancy. Besides these realities, no one 
could foresee the final form that the software for this pioneering 
vehicle would take, even after years of development work had 
elapsed, since there continued to be both minor and major changes. 
NASA and its contractors made over 2,000 requirements changes be- 
tween 1975 and the first flight in 198180. As a result, about $200 mil- 
lion was spent on software, as opposed to an initial estimate of $20 
million. Even so, NASA lessened the difficulties by making several 
early decisions that were crucial for the program’s success. NASA 
separated the software contract from the hardware contract, closely 
managed the contractors and their methods, chose a high-level lan- 
guage, and maintained conceptual integrity. 

NASA awarded IBM Corporation the first independent Shuttle 
software contract on March 10, 1973. IBM and Rockwell Inter- 
national had worked together during the period of competition for the 
orbiter contract8 I. Rockwell bid on the entire aerospacecraft, intend- 
ing to subcontract the computer hardware and software to IBM. But to 
Rockwell’s dismay, NASA decided to separate the software contract 
from the orbiter contract. As a result, Rockwell still subcontracted 
with IBM for the computers, but IBM had a separate software contract 
monitored closely by the Spacecraft Software Division of the Johnson 
Space Center. There are several reasons why this division of labor oc- 
curred. Since software does not weigh anything in and of itself, it is 
used to overcome hardware problems that would require extra systems 
and components (such as a mechanical control system)82. Thus 
software is in many ways the most critical component of the Shuttle, 
as it ties the other components together. Its importance to the overall 
program alone justified a separate contract, since it made the contrac- 
tor directly accountable to NASA. Moreover, during the operations 
phase, software underwent the most changes, the hardware being es- 
sentially fixed83. As time went on, Rockwell’s responsibilities as 
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prime hardware contractor were phased out, and the shuttles were 
turned over to an operations group. In late 1983, Lockheed Corpora- 
tion, not Rockwell, won the competition for the operations contract. 
By keeping the software contract separate, NASA could develop the 
code on a continuing basis. There is a considerable difference between 
changing maintenance mechanics on an existing hardware system and 
changing software companies on a not-yet-perfect system because to 
date the relationships between components in software are much har- 
der to define than those in hardware. Personnel experienced with a 
specific software system are the best people to maintain it. Lastly, 
Christopher Kraft of Johnson Space Center and George Low of NASA 
Headquarters, both highly influential in the manned spacecraft 
program during the early 1970's, felt that Johnson had the software 
management expertise to handle the contract directlyX4. 

One of the lessons learned from monitoring Draper Laboratory in 
the Apollo era was that by having the software development at a 
remote site (like Cambridge), the synergism of informally exchanged 
ideas is lost; sometimes it took 3 to 4 weeks for new concepts to filter 
over85. IBM had a building and several hundred personnel near 
Johnson because of its Mission Control Center contracts. When IBM 
won the Shuttle contract, it simply increased its local force. 

The closeness of IBM to Johnson Space Center also facilitated the 
ability of NASA to manage the project. The first chief of the Shuttle's 
software, Richard Parten, observed that the experience of NASA 
managers made a significant contribution to the success of the pro- 
gramming effort86. Although IBM was a giant in the data processing 
industry, a pioneer in real-time systems, and capable of putting very 
bright people on a project, the company had little direct experience 
with avionics software. As a consequence, Rockwell had to supply a 
lot of information relating to flight control. Conversely, even though 
Rockwell projects used computers, software development on the scale 
needed for the Shuttle was outside its experience. NASA Shuttle 
managers provided the initial requirements for the software and 
facilitated the exchange of information between the principal contrac- 
tors. This situation was similar to that during the 1960s when NASA 
had the best rendezvous calculations people in the world and had to 
contribute that expertise to IBM during the Gemini software develop- 
ment. Furthermore, the lessons of Apollo inspired the NASA 
managers to push IBM for quality at every pointX7. 

The choice of a high-level language for doing the majority of the 
coding was important because, as Parten noted, with all the changes, 
"we'd still be tryin to get the thing off the ground if we'd used as- 
sembly language"8f Programs written in high-level languages are far 
easier to modify. Most of the operating system software, which is 
rarely changed, is in assembler, but all applications software and some 
of the interfaces and redundancy management code is in HAL/SX9. 
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Although the decision to program in a high-level language meant that 
a large amount of support software and development tools had to be 
written, the high-level language nonetheless proved advantageous, 
especially since it has specific statements created for real-time pro- 
gramming. 

Defining the Shuttle Software 

In the end, the success of the Shuttle's software development was 
due to the conceptual integrity established by using rigorously main- 
tained requirements documents. The requirements phase is the begin- 
ning of the software life cycle, when the actual functions, goals, and 
user interfaces of the eventual software are determined in full detail. If 
a team of a thousand workers was asked to set software requirements, 
chaos would result90. On the other hand, if few do the requirements 
but many can alter them later, then chaos would reign again. The 
strategy of using a few minds to create the software architecture and 
interfaces and then ensuring that their ideas and theirs alone are im- 
plemented, is termed "maintaining conceptual integrity," which is well 
explained in Frederick C. Brooks' The Mythical M a n - M ~ n t h ~ ~ .  As for 
other possible solutions, Parten says, "the only right answer is the one 
you pick and make to worktf9*. 

Shuttle requirements documents were arranged in three Levels: 
A, B, and C ,  the first two written by Johnson Space Center engineers. 
John R. Gannan prepared the Level A document, which is comprised 
of a comprehensive description of the operating system, applications 
programs, keyboards, displays, and other components of the software 
system and its interfaces. William Sullivan wrote the guidance, 
navigation and control requirements, and John Aaron, the system 
management and payload specifications of Level B. They were as- 
sisted by James Broadfoot and Robert E r n ~ 1 1 ~ ~ .  Level B requirements 
are different in that they are more detailed in terms of what functions 
are executed when and what parameters are needed94. The Level Bs 
also define what information is to be kept in COMPOOLS, which are 
HAL/S structures for maintaining common data accessed by different 
tasks95. The Level C requirements were more of a design document, 
forming a set with Level B requirements, since each end item at Level 
C must be traceable to a Level B r e q ~ i r e m e n t ~ ~ .  Rockwell Inter- 
national was responsible for the development of the Level C require- 
ments as, technically, this is where the contractors take over from the 
customer, NASA, in developing the software. 

Early in the program, however, Draper Laboratory had significant 
influence on the software and hardware systems for the Shuttle. 
Draper was retained as a consultant by NASA and contributed two 
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key items to the software development process. The first was a docu- 
ment that "taught" NASA and other contractors how to write require- 
ments for software, how to develop test lans, and how to use func- 

was instructing NASA and IBM on such things considering its dif- 
ficulties in the mid-1960s with the development of the Apollo flight 
software. It was likely those difficult experiences that helped motivate 
the MIT engineers to seriously study software techniques and to be- 
come, within a very short time, one of the leading centers of software 
engineering theory. The Draper tutorial included the concept of highly 
modular software, software that could be "plugged into" the main cir- 
cuits of the Shuttle. This concept, an application of the idea of inter- 
changeable parts to software, is used in many software systems today, 
one example being the UNIX*** operating system developed at Bell 
Laboratories in the 1970s, under which single function software tools 
can be combined to perform a large variety of functions. 

Draper's second contribution was the actual writing of some early 
Level C requirements as a This version of the Level C 
documents contained the same components as in the later versions 
delivered by Rockwell to IBM for coding. Rockwell's editions, 
however, were much more detailed and complete, reflecting their 
practical, rather than theoretical, purpose and have been an irritation 
for IBM. IBM and NASA managers suspect that Rockwell, miffed 
when the software contract was taken away from them, may have 
delivered incredibly precise and detailed specifications to the software 
contractor. These include descriptions of flight events for each major 
portion of the software, a structure chart of tasks to be done by the 
software during that major segment, a functional data flowchart, and, 
for each module, its name, calculations, and operations to be per- 
formed, and input and output lists of parameters, the latter already 
named and accompanied by a short definition, source, precision, and 
what units each are in. This is why one NASA manager said that "you 
can't see the forest for the trees" in Level C, oriented as it is to the 
production of individual modules99. One IBM engineer claimed that 
Rockwell went "way too far" in the Level C documents, that they told 
IBM too much about how to do things rather than just what to dolo0. 
He further claimed that the early portion of the Shuttle development 
was "underengineered" and that Rockwell and Draper included some 
requirements that were not passed on by NASA. Parten, though, said 
that all requirements documents were subject to regular review by 
joint teams from NASA and RockwelllO1. 

The impression one gains from documents and interviews is that 
both Rockwell and IBM fell victim to the "not invented here" 

tional flow diagrams, among other tools9 7 . It seems ironic that Draper 

UNIX is a trademark of AT&T. *** 
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syndrome: If we didn’t do it, it wasn’t done right. For example, Rock- 
well delivered the ascent requirements, and IBM coded them to the 
letter, thereby exceeding the available memory by two and a third 
times and demonstrating that the requirements for ascent were exces- 
sive. Rockwell, in return, argued for 2 years about the nature of the 
operating system, calling for a strict time-sliced system, which al- 
locates predefined periods of time for the execution of each task and 
then suspends tasks unfinished in that time period and moves on to the 
next one. The system thus cycles through all scheduled tasks in a 
fixed period of time, working on each in turn. Rockwell’s original 
proposal was for a 40-millisecond cycle with synchronization points 
at the end of each102. IBM, at NASA’s urging, countered with a 
priority-interrupt-driven system similar to the one on Apollo. Rock- 
well, experienced with time-slice systems, fought this from 1973 to 
1975, convinced it would never work103. 

The requirements specifications for the Shuttle eventually con- 
tained in their three levels what is in both the specification and design 
stage of the software life cycle. In this sense, they represent a fairly 
complete picture of the software at an early date. This level of detail at 
least permitted NASA and its contractors to have a starting point in 
the development process. IBM constantly points to the number of 
changes and alterations as a continuing problem, partially ameliorated 
by implementing the most mature requirements firstlo4. Without the 
attempt to provide detail at an early date, IBM would not have had 
any mature requirements when the time came to code. Even now, re- 
quirements are being changed to reflect the actual software, so they 
continue to be in a process of maturation. But early development of 
specifications became the means by which NASA could enforce con- 
ceptual integrity in the shuttle software. 

Architecture of the Primary Avionics Software System 

The Primary Avionics Software System, or PASS, is the software 
that runs in all the Shuttle’s four primary computers. PASS is divided 
into two parts: system software and applications software. The sys- 
tem software is the Flight Computer Operating System (FCOS), the 
user interface programming, and the system control programs, 
whereas the applications software is divided into guidance, navigation 
and control, orbiter systems management, payload and checkout 
programs. Further divisions are explained in Box 4-3. 

The most critical part of the system software is the FCOS. NASA, 
Rockwell, and IBM solved most of the grand conceptual problems, 
such as the nature of the operating system and the redundancy 
management scheme, by 1975. The first task was to convert the FCOS 
from the proposed 40-millisecond loop operating system to a priority- 
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Box 4-3: Structure of PASS Applications Software 
The PASS guidance and navigation software is divided into major 

functions, dictated by mission phases, the most obvious of which are 
preflight, ascent, on-orbit, and descent. The requirements state that these 
major functions be called OPS, or operational sequences. (e.g., OPS-1 is 
ascent; OPS-3, descent.) Within the OPS are major modes. In OPS-1, the 
first-stage bum, second-stage bum, first orbital insertion bum, second or- 
bital insertion bum, and the initial on-orbit coast are major modes; tran- 
sition between major modes is automatic. Since the total mission 
software exceeds the capacity of the memory, OPS transitions are nor- 
mally initiated by the crew and require the OPS to be loaded from the 
MMU. This caused considerable management concem over the preser- 
vation of data, such as the state vector, needed in more than one OPSio5. 
NASA’s solution is to keep common data in a major function base, 
which resides in memory continuously and is not overlaid by new OPS 
being read into the computers. 

Within each OPS, there are special functions (SPECs) and display 
functions (DISPs). These are available to the crew as a supplement to the 
functions being performed by the current OPS. For example, the descent 
software incorporates a SPEC display showing the horizontal situation as 
a supplement to the OPS display showing the vertical situation. This 
SPEC is obviously not available in the on-orbit OPS. A DISP for the 
on-orbit OPS may show fuel cell output levels, fuel reserves in the or- 
bital maneuvering system, and other such information. SPECs usually 
contain items that can be selected by the crew for execution. DISPs are 
just what their name means, displays and not action items. Since SPECs 
and DISPs have lower priority than OPS, when a big OPS is in memory 
they have to be kept on the tape and rolled in when requestedLo6. The 
actual format of the SPECs, DISPs, OPS displays, and the software that 
interprets crew entries on the keyboard is in the user interface portion of 
the system software. 

driven system107. Priority intempt systems are superior to time-slice 
systems because they degrade gracefully when overloaded108. In a 
time-slice system, if the tasks scheduled in the current cycle get 
bogged down by excessive 1/0 operations, they tend to slow down the 
total time of execution of processes. IBM’s version of the FCOS ac- 
tually has cycles, but they are similar to the ones in the Skylab system 
described in the previous chapter. The minor cycle is the high- 
frequency cycle; tasks within it are scheduled every 40 milliseconds. 
Typical tasks in this cycle are those related to active flight control in 
the atmosphere. The major cycle is 960 milliseconds, and many 
monitoring and system management tasks are scheduled at that 
frequencylo9. If a process is still running when its time to restart 
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Figure 4-6. A block diagram of the Shuttle flight computer software architecture. 
(From NASA, Datu Processing System Workbook) 

comes up due to excessive 1/0 or because it was interrupted, it cancels 
its next cycle and finishes up11o. If a higher priority process is called 
when another process is running, then the current process is inter- 
rupted and a program status word (PSW) containing such items as the 
address of the next instruction to be executed is stored until the inter- 
ruption is satisfied. The last instruction of an interrupt is to restore the 
old PSW as the current PSW so that the interrupted process can 
continuelll. The ability to cancel processes and to interrupt them 
asynchronously provides flexibility that a strict time-slice system does 
not. 

A key requirement of the FCOS is to handle the real-time state- 
ments in the HAL/S language. The most important of these are 
SCHEDULE, which establishes and controls the frequency of execu- 
tion of processes; TERMINATE and CANCEL, which are the op- 
posite of SCHEDULE; and WAIT, which conditionally suspends 
execution1 The method of implementing these statements is con- 

ORIGINAL PAGE IS 
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trolled by a separate interface control document113. SCHEDULE is 
generally programmed at the beginning of each operational sequence 
to set up which tasks are to be done in that software segment and how 
often they are to be done. The syntax of SCHEDULE permits the 
programmer to assign a frequency and priority to each task. TER- 
MINATE and CANCEL are used at the end of software phases or to 
stop an unneeded process while others continue. For example, after 
the solid rocket boosters bum out and separate, tasks monitoring them 
can cease while tasks monitoring the main engines continue to run. 
WAIT, although handy, is avoided by IBM because of the possibility 
of the software being "hung up" while waiting for the 1/0 or other 
condition required to continue the process114. This is called a race 
condition or "deadly embrace" and is the bane of all shared resource 
computer operating systems. 

The FCOS and displays occupy 35K of memory at all times115. 
Add the major function base and other resident items, and about 60K 
of the 106K of core remains available for the applications programs. 
Of the required applications programs, ascent and descent proved the 
most troublesome. Fully 75% of the software effort went into those 
two programs116. After the first attempts at preparing the ascent 
software resulted in a 140K load, serious code reduction began. By 
1978, IBM reduced the size of the ascent program to 116K, but NASA 
Headquarters demanded it be further knocked down to 80K1I7. The 
lowest it ever got was 98,840 words (including the system software), 
but its size has since crept back up to nearly the full capacity of the 
memory. IBM accomplished the reduction by moving functions that 
could wait until later operational sequences118. The actual figures for 
the test flight series programs are in Table 4- 1 19. The total size of the 
flight test software was 500,000 words of code. Producing it and 
modifying it for later missions required the development of a com- 
plete production facility. 
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TABLE 4-1: Sizes of Software Loads in PASS 

NAME K WORDS 

Preflight initialization 

Preflight checkout 

Ascent and abort 

On-orbi t 

On-orbit checkout 

On-orbit system management 

Entry 

Mass memory utility 

72.4 

81.4 

105.2 

83.1 

80.3 

84.1 

101.1 

70.1 

Note: Payload and rendezvous software was added later during the operations 

phase. 

Implementing PASS 
NASA planned that PASS would be a continuing development 

process. After the first flight programs were produced, new functions 
needed to be added and adapted to changing payload and mission re- 
quirements. For instance, over 50% of PASS modules chan ed during 
the first 12 flights in response to requested enhancementsf2O. To do 
this work, NASA established a Software Development Laboratory at 
Johnson Space Center in 1972 to prepare for the implementation of 
the Shuttle programs and to make the software tools needed for ef- 
ficient coding and maintenance. The Laboratory evolved into the 
Software Production Facility( SPF) in which the software development 
is carried on in the operations era. Both the facilities were equipped 
and managed by NASA but used largely by contractors. 

The concept of a facility dedicated to the production of onboard 
software surfaced in a Rand Corporation memo in early 197Olz1. The 
memo summarized a study of software requirements for Air Force 
space missions during the decade of the 1970s. One reason for a 
government-owned and operated software factory was that it would be 
easier to establish and maintain security. Most modules developed for 
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the Shuttle, such as the general flight control software and memory 
displays, would be unclassified. However, Department of Defense 
(DoD) payloads require system management and payload manage- 
ment software, plus occasional special maneuvering modules. These 
were expected to be classified. Also, if the software maintenance con- 
tract moved from the original prime contractor to some different 
operations contractor, it would be considerably simpler to accomplish 
the transfer if the software library and development computers were 
government owned and on government property. Lastly, having such 
close control over existing software and new development would 
eliminate some of the problems in communication, verification, and 
maintenance encountered in the three previous manned programs. 

Developing the SPF turned out to be as large a task as developing 
the flight software itself. During the mid-l970s, IBM had as many 
people doing software for the development lab as they had working on 
PASS122. The ultimate purpose of the facility is to provide a program- 
ming team with sufficient tools to prepare a software load for a flight. 
This software load is what is put on to the MMU tape that is flown on 
the spacecraft. In the operations era of the 1980s, over 1,000 compiled 
modules are available. These are fully tested, and often previously 
used, versions of tasks such as main engine throttling, memory 
modification, and screen displays that rarely change from flight to 
flight. New, mission-specific modules for payloads or rendezvous 
maneuvers are developed and tested using the SPF’s programming 
tools, which themselves represent more than a million lines of 
code123. The selection of existing modules and the new modules are 
then combined into a flight load that is subject to further testing. 
NASA achieved the goal of having such an efficient software produc- 
tion system through an 8-year development process when the SPF was 
still the Laboratory. 

In 1972, NASA studied what sort of equipment would be required 
for the facility to function properly. Large mainframe computers com- 
patible with the AP-101 instruction set were a must. Five IBM 360/75 
computers, released from Apollo support functions, were availablelZ4. 
These were the development machines until January of 1982125. 
Another requirement was for actual flight equipment on which to test 
developed modules. Three AP- 101 computers with associated display 
electronics units connected to the 360s with a flight equipment inter- 
face device (FEID) especially developed for the purpose. Other 
needed components, such as a 6-degree-of-freedom flight simulator, 
were implemented in software126. The resulting group of equipment is 
capable of testing the flight software by interpreting instructions, 
simulating functions, and running it in the actual flight hardware127. 

In the late 1970s, NASA realized that more powerful computers 
were needed as the transition was made from development to opera- 
tions. The 360s filled up, so NASA considered the Shuttle Mission 
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Simulator(SMS), the Shuttle Avionics Instrumentation Lab ( S A I L ) ,  
and the Shuttle Data Processing Center’s computers as supplementary 
development sites, but this idea was rejected because they were all too 
busy doing their primary functions128. In 1981, the Facility added two 
new IBM 3033N computers, each with 16 million bytes of primary 
memory. The SPF then consisted of those mainframes, the three 
AP-101 computers and the interface devices for each, 20 magnetic 
tape drives, six line printers, 66 million bytes of drum memory, 23.4 
billion bytes of disk memory, and 105 NASA ac- 
complished rehosting the development software to the 3033s from the 
360s during the last quarter of 1981. Even this very large computer 
center was not enough. Plans at the time projected on-line primary 
memory to grow to 100 million bytes130, disk storage to 160 billion 
bytes131, and two more interface units, display units, and AP-101s to 
handle the growing DOD business1 32. Additionally, terminals con- 
nected directly to the SPF are in Cambridge, Massachusetts, and at 
Goddard Space Flight Center, Marshall Space Flight Center, Kennedy 
Space Center, and Rockwell International in Downey, California133. 

Future plans for the SPF included incorporating backup system 
software development, then done at Rockwell, and introducing more 
automation. NASA managers who experienced both Apollo and the 
Shuttle realize that the operations software preparation is not enough 
to keep the brightest minds sufficiently occupied. Only a new project 
can do that. Therefore, the challenge facing NASA is to automate the 
SPF, use more existing modules, and free people to work on other 
tasks. Unfortunately, the Shuttle software still has bugs, some of 
which are no fault of the flight software developers, but rather because 
all the tools used in the SPF are not yet mature. One example is the 
compiler for HAL/S. Just days before the STS-7 flight, in June, 1983, 
an IBM employee discovered that the latest release of the compiler 
had a bug in it. A quick check revealed that over 200 flight modules 
had been modified and recompiled using it. All of those had to be 
checked for errors before the flight could go. Such problems will con- 
tinue until the basic flight modules and development tools are no 
longer constantly subject to change. In the meantime, the accuracy of 
the Shuttle software is dependent on the stringent testing program 
conducted by IBM and NASA before each flight. 

Verification and Change Management of the Shuttle Software 

IBM established a separate line organization for the verification 
of the Shuttle software. IBM’s overall Shuttle manager has two 
managers reporting to him, one for design and development, and one 
for verification and field operations. The verification group has just 



COMPUTERS IN THE SPACE SHUTTLE AVIONICS SYSTEM 119 

less than half the members of the development group and uses 35% of 
the software budget134. There are no managerial or personnel ties to 
the development group, so the test team can adopt an "adversary 
relationship" with the development team. The verifiers simply as- 
sume that the software is untested when received135. In addition, the 
test team can also attempt to prove that the requirements documents 
are wrong in cases where the software becomes unworkable. This en- 
ables them to act as the "conscience" of the entire project136. 

LBM began planning for the software verification while the re- 
quirements were being completed. By starting verification activity as 
the software took shape, the test group could plan its strategy and 
begin to write its own books. The verification documentation consists 
of test specifications and test procedures including the actual inputs to 
be used and the outputs expected, even to the detail of showing the 
content of the CRT screens at various points in the test137. The 
software for the first flight had to survive 1,020 of these tests138. Fu- 
ture flight loads could reuse many of the test cases, but the preparation 
of new ones is a continuing activity to adjust to changes in the 
software and payloads, each of which must be handled in an orderly 
manner. 

Suggestions for changes to improve the system are unusually wel- 
come. Anyone, astronaut, flight trainer, IBM programmer, or NASA 
manager, can submit a change request139. NASA and IBM were 
processing such requests at the rate of 20 per week in 1981140. Even 
as late as 1983 IBM kept 30 to 40 people on re uirements analysis, or 

responding change evaluation board. Early in the program, it was 
chaired by Howard W. Tindall, the Apollo software manager, who by 
then was head of the Data Systems and Analysis Directorate. This 
turned out to be a mistake, as he had conflicting interests142. The 
change control board moved to the Shuttle program office. Due to the 
careful review of changes, it takes an average of 2 years for a new re- 
quirement to get implemented, tested, and into the field143. Generally, 
requests for extra functions that would push out current software due 
to memory restrictions are turned downla. 

the evaluation of requests for enhancements1 1 I .  NASA has a cor- 
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Box 4-4: How IBM Verifies the Shuttle Flight Software 
The Shuttle software verification process actually begins before the 

test group gets the software, in the sense that the development organiza- 
tion conducts internal code reviews and unit tests of individual modules 
and then integration tests of groups of modules as they are assembled 
into a software load. There are two levels of code inspection, or 
"eyeballing" the software looking for logic errors. One level of inspec- 
tion is by the coders themselves and their peer reviewers. The second 
level is done by the outside verification team. This activity resulted in 
over 50% of the discrepancy reports (failures of the software to meet the 
specification) filed against the software, a percentage similar to the 
Apollo experience and reinforcing the value of the idea145. When the 
software is assembled, it is subject to the First Article Configuration In- 
spection (FACI), where it is reviewed as a complete unit for the first 
time. It then passes to the outside verification group. 

Because of the nature of the software as it is delivered, the verifica- 
tion team concentrates on proving that it meets the customer's require- 
ments and that it functions at an acceptable level of performance. Consis- 
tent with the concept that the software is assumed untested, the verifica- 
tion group can go into as much detail as time and cost allow. Primarily, 
the test group concentrates on single Software loads, such as ascent, on- 
orbit, and so forth146. To facilitate this, it is divided into teams that spe- 
cialize in the operating system and detail, or functional verification; 
teams that work on guidance, navigation, and control; and teams that cer- 
tify system performance. These groups have access to the software in the 
SPF, which thus doubles as a site for both development and testing. 
Using tools available in the SPF, the verification teams can use the real 
flight computers for their tests (the preferred method). The testers can 
freeze the execution of software on those machines in order to check in- 
termediate results, alter memory, and even get a log of what commands 
resulted in response to what inputs'47. 

After the verification group has passed the software, it is given an 
official Configuration Inspection and turned over to NASA. At that point 
NASA assumes configuration control, and any changes must be ap- 
proved through Agency channels. Even though NASA then has the 
software, IBM is not finished with it148. 
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Box 4-4 (Continued) 

The software is usually installed in the SAIL for prelaunch, ascent, 
and abort simulations, the Flight Simulation Lab (FSL) in Downey for 
orbit, de-orbit, and entry simulations, and the SMS for crew training. Al- 
though these installations are not part of the preplanned verification 
process, the discrepancies noted by the users of the software in the 
roughly 6 months before launch help complete the testing in a real en- 
vironment. Due to the nature of real-time computer systems, however, 
the software can never be fully certified, and both IBM and NASA are 
aware of this149. There are simply too many interfaces and too many op- 
portunities for asynchronous input and output. 

Discrepancy reports cause changes in software to make it match 
the requirements. Early in the program, the software found its way 
into the simulators after less verification because simulators depend 
on software just to be turned on. At that time, the majority of the dis- 
crepancy reports were from the field installations. Later, the majority 
turned up in the SPF150. All discrepancy reports are formally disposed 
of, either by appropriate fixes to the software, or by waiver. Richard 
Parten said, "Sometimes it is better to put in an 'OPS Note' or waiver 
than to fix (the software). We are dependent on smart pilots"151. If the 
discrepancy is noted too close to a flight, if it requires too much ex- 
pense to fix, it can be waived ifthere is no immediate danger to crew 
safety. Each Flight Data File carried on board lists the most important 
current exceptions of which the crew must be aware. By STS-7 in 
June of 1983, over 200 pages of such exceptions and their descriptions 
existed15*. Some will never be fixed. but the maioritv were addressed 
during the Shuttle launch hiatus following the 5 <L aicident in January 
1986. 

So, despite the well-planned and well-manned verification effort, 
software bugs exist. Part of the reason is the complexity of the real- 
time system, and part is because, as one IBM manager said, "we 
didn't do it up front enough," the "it" being thinking through the 
program logic and verification schemes153. Aware that effort ex- 
pended at the early part of a project on quality would be much cheaper 
and simpler than trying to put quality in toward the end, IBM and 
NASA tried to do much more at the beginning of the Shuttle software 
development than in any previous effort, but it still was not enough to 
ensure perfection. 
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Box 4-5: The Nature of the Backup Flight System 
The Backup Flight System consists of a single computer and a 

software load that contains sufficient functions to handle ascent to orbit, 
selected aborts during ascent, and descent from orbit to a landing site. In 
the interest of avoiding a generic software failure, NASA kept its 
development separate from PASS. An engineering directorate, not the 
on-board software division, managed the software contract for the 
backup, won by R ~ c k w e l l ' ~ ~ .  

The major functional difference between PASS and the backup is 
that the latter uses a time-slice operating system rather than the 
asynchronous priority-driven system of PASS155. This is consistent with 
Rockwell's opinion on how that system was to be designed. Ironically, 
since the backup must listen in on PASS operations so as to be ready for 
instant takeover, PASS had to be modified to make it more 
synchronous156. Sixty engineers were still working on the Backup Flight 
System software as late as 1983 15'. 

USING THE SHUTTLE DPS 

With the level of complexity present in the hardware and software 
just described, it is not surprising that the crew interfaces to those 
components are also complex. The complexity is caused not so much 
by the design of the interfaces but by the limited amount of memory 
avairable for graphics displays, automatic reconfiguring of the com- 
puters, and other utilities to make the system more cooperative and 
simpler for the users. There is some difference between the way the 
users of the system perceive the DPS and the way the designers, both 
NASA and IBM, perceive it. Some astronauts and trainers are openly 
critical. John Young, the Chief Astronaut in the early 1980s, com- 
plained, "What we have in the Shuttle is a disaster. We are not making 
computers do what we want"158. Flight trainer Frank Hughes also 
remarked that "the PASS doesn't do anything for us"159, noting that 
such practical items as the time from loss of ground-station signals 
and acquisition of new stations is not part of the primary software. 
Both said, "We end up working for the computer, rather than the com- 
puter working for us." This comment is something reminiscent of 
Apollo days, when the number of keystrokes needed to fly a mission 
was a concern. John Aaron, one of NASA's designers of PASS inter- 
faces and later chief of spacecraft software, said that the Apollo ex- 
perience influenced Shuttle designers to avoid excessive pilot inter- 
action with the computers. Even so, he found the "crew 
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Figure 4-7. The forward flight deck of a Shuttle, with the three CRT screens and 
twin keyboards visible in the center. (NASA photo S80-35133) 

interfaces ... more confusing and complex than I thought they would 
be11160. One statistic that supports his perception is that the 13,000 
keystrokes used in a week-long lunar mission are matched by a Shut- 
tle crew in a 58-hour flight161. 

Another aspect of the "working for the computer" problem is that 
steps normally done by computers using preprogrammed functions are 
done manually on the Shuttle. The reconfiguration of PASS from the 
ascent redundant set to the on-orbit groupings has to be done by the 
crew, a process taking several minutes and needing to be reversed be- 
fore descent. Aaron acknowledges that the computer interfaces are too 
close to machine level, but points out that management "would not 
buy" simple automatic reconfiguration schemes. Even if they had, 
there is no computer memory to store such utilities. 

Tied to the computer memory problem is the fact that many func- 
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tions have to be displayed together on a screen because of the fact that 
such displays are "memory hungry." As a result, many screens are so 
crowded that reading them quickly is difficult, the process being fur- 
ther affected by the blandness and primitive nature of any graphics 
available. Astronaut Vance Brand claimed that after initial confusion, 
several hours with simulators makes things easier to find; he makes a 
point of checking his entries on the input line before pressing the ex- 
ecute key16*. Young does that as well, but for additional reasons: The 
keyboard buffer is so small that entering data too quickly causes some 
to be lost, and he wants to check whether he is accessing the right 
screen display with the proper keyboard. This latter concern arises 
because there are only two keyboards for the three forward CRTs. 
Since both keyboards can be assigned to the same screen, two CRTs 
may not be currently set up for input. Even if the two keyboards are 
assigned to different screens, one CRT is left without capability for 
immediate crew input. Astronaut Henry Hartsfield termed this situa- 
tion "prone to error 11 163 . 

Since flying the Shuttle is in many ways flying the Shuttle com- 
puters (they provide the active flight control, guidance and navigation, 
systems management, and payload functions), the astronauts are inter- 
ested in making suggestions for improving the computer system. Most 
revolve around more automation, more user friendliness, more color, 
better graphics, and more functions, such as adding a retum-to- 
launch-site (RTLS) abort with two engines out in addition to the 
present version with only one engine out164. Each of these enhance- 
ments is tied to increasing memory. IBM proposed a new version of 
the Shuttle computers with 256K of memory and software com- 
patibility with the existing system. Johnson Space Center began test- 
ing these AP-1O1F computers in 1985, with the first operational use 
projected for the resumption of Shuttle missions in 1988. 

In the meantime, the astronauts themselves pioneered efforts to 
use small computers to add functions and back up the primary sys- 
tems. Early flights used a Hewlett-Packard HP-41C programmable 
calculator to determine ground-station availability, as well as carry a 
limited version of the calculations for time-to-retrofire. Beginning 
with STS-9 in December, 1983, a Grid Systems Compass portable 
microcomputer with graphics capabilities was carried to display 
ground stations and to provide functions impractical on the primary 
computers. Mission Specialist Terry Hart, responsible for program- 
ming the HP-41Cs, said that placing the mission documentation on the 
computer was also being ~ 0 n s i d e r e d . l ~ ~  

THE SPACE SHUTTLE MAIN ENGINE CONTROLLERS 

Among the many special-purpose computers on the Shuttle, the 
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Box 4-6: Using the Shuttle's Keyboards 
The Shuttle's keyboards are different from those found on Gemini 

and Apollo because they are hexadecimal, or base 16, rather than 
decimal, so that memory locations can be altered by hex entries from the 
keyboard. A single hex digit represents 4 bits, so just four digits can fill a 
half-word memory location. The other keys perform specialized func- 
tions. The most often used are 

0 ITEM: This selects a specific function displayed on a CRT. For 
example, if the astronaut wishes to perform a function numbered 
32 on the screen, he or she presses ITEM, 3,2, EXEC. 

OPS: This, plus a four-digit number, selects the operational se- 
quence and major mode desired by the crew. For instance, to 
choose the first major mode of the ascent software, OPS, 1, 1, 0, 
1, and PRO is entered. 

0 SPEC: This key, plus appropriate digits and PRO, selects a 
specialist function or display function screen. Each OPS has as- 
sociated with it a number of primary screens that reflect what is 
happening in the software. The ascent program has a vertical 
path graphic, for instance. Additionally, special functions can be 
called from SPEC displays that are overlaid on the primary 
screens when called. On-orbit, and several other OPS, have a 
"GPC Memory" display that can be used to read or write to in- 
dividual memory locations. It cannot be called from either the 
ascent or descent OPS. Display function screens are just that: 
used to show various data such as fuel cell levels, but with no 
crew functions. To return to the primary screen that was on the 
CRT before the SPEC or DISP call, the RESUME key is used. 

.CLEAR: Each time this key is depressed, one character is 
deleted from the input line on the CRT accessed. This enables an 
astronaut to erase an error if it is caught before EXEC or PRO is 
depressed. 

'+' : This sign can be used as a delimiter around numeric data or 
between a series of function selections. 

main engine controllers stand out as a clear "first" in space technol- 
ogy. The Shuttle's three main liquid-propellant engines are the most 
complex and "hottest" rockets ever built. The complexity is tied to the 
mission requirements, which state that they be throttleable, a common 
characteristic of internal combustion engines and turbojets, but rare in 
the rocket business. They run "hotter" than any other rocket engine 
because at any given moment they are closer to destroying themselves 
than their predecessors. Previous engines were overbuilt in the sense 
that they were designed to bum at full thrust through their entire 
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Figure 4-8. Keyboard layout of the Shuttle computer system. (From NASA, Data 
Processing System Workbook) 

lifetime of a few minutes with no chance that the continuous explo- 
sion of fuel and oxidizer would get out of control. To ensure this, en- 
gineers designed combustion chambers and cooling systems better 
than optimum, with the result that the engines weighed more than 
less-protec ted designs, thus reducing performance. Engineers also set 
fluid mixtures and flow rates by mechanical means at preset levels, 
and levels could not be changed to gain greater performance. The 
Shuttle engines can adjust flow levels, can sense how close to explod- 
ing they are, and can respond in such a way as to maintain maximum 
performance at all times. Neither the throttleability or the perfor- 
mance enhancements could be accomplished without a digital com- 
puter as a control device. 

In 1972, NASA chose Rocketdyne as the engine contractor, with 
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S P E C  0 P R O  

Figure 4-9. A typical display of the Primary Avionics Software System. (From 
NASA, Data Processing System Workbook) 

Marshall Space Flight Center responsible for monitoring the design, 
production, and testing of the engines. Rocketdyne conducted a 
preliminary study of the engine control problem and recommended 
that a distributed approach be used for the solution166. By placing 
controllers at the engines themselves, complex interfaces between the 
engine and vehicle could be avoided. Also, the high data rates needed 
for active control are best handled with a dedicated computer. Both 
Marshall and Rocketdyne agreed that a digital computer controller 
was better than an analog controller for three reasons. First, software 
allows for greater flexibility. Inasmuch as the control concepts for the 
engines were far from settled in 1972, NASA considered the ease of 
modifying software versus hardware a very important advantage 16’. 
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Second, the digital system could respond faster. And third, the failure 
detection function could be simpler168. Basically, the computer has 
only two functions: to control the engine and to do self tests. 

The concept of fail operational/fail-safe is preserved with the en- 
gine controllers because each engine has a dual redundant computer 
attached to it. Failure of the first computer does not impede opera- 
tional capability, as the second takes over instantly. Failure of the 
second computer causes a graceful shutdown of the affected 
engine169. Loss of an engine does not cause any immediate danger to 
a Shuttle crew, as demonstrated in a 1985 mission that lost an engine 
and still achieved orbit. If engine loss occurs early in a flight, the mis- 
sion can be aborted through a RTLS maneuver that causes the 
spacecraft essentially to turn around and fly back to a runway near the 
launch pad. Slightly later aborts may lead to a landing in Europe for 
Kennedy Space Center launches. If the engine fails near orbit it may 
be possible to achieve an orbit and then modify it using the orbital 
maneuvering system engines. 

Controller Software and Redundancy Management 

As with the main computers on the Shuttle, software is an impor- 
tant part of the engine controller system. NASA managers adopted a 
strict software engineering approach to the controller code. Marshall's 
Walter Mitchell said, "We try to treat the software exactly like the 
hardware"170. In fact, the controller software is more closely married 
to engine hardware than in other systems under computer control. The 
controllers operate as a real-time system with a fixed cyclic execution 
schedule. Each major cycle has four 5-millisecond minor cycles for a 
total of 20 milliseconds. This is a high frequency, necessitated by the 
requirement to control a rapidly changing engine environment. Each 
major cycle starts and ends with a self test. It proceeds through engine 
control tasks, input sensor data reads, engine limit monitoring tasks, 
output, another round of input sensor data, a check of internal voltage, 
and then the second self test171. Some free time is built into the cycle 
to avoid overruns into the next cycle. So that the controller will not 
waste processing time handling data requests from the primary 
avionics system, direct memory access of engine component data can 
be made by the primary172. 

As with the primary computers in the Shuttle, the memory of the 
controller cannot hold all the software originally designed for it. A set 
of preflight checkout programs have to be stored on the MMU and 
rolled in during the countdown. At T-30 hours, the engines are ac- 
tivated and the flight software Ioad is read from the mass memory173. 
Even this way, fewer than 500 words of the 16K are unused174. 
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Figure 4-10. A Shuttle Main Engine Controller mounted in an engineering 
simulator at the Marshall Space Flight Center. (NASA photo) 

Although redundant, the controllers are not synchronized like the 
primary computers. Marshall Space Flight Center studied active 
synchronization, but the additional hardware and software overhead 
seemed too expensive 175. The present system of redundancy manage- 
ment most closely resembles that used by the Skylab computers. Since 
Marshall also had responsibility for those computers and was making 
the decision about the controllers at the same time Skylab was operat- 
ing, some influence from the ATMDC experience is possible. Two 
watchdog timers are used to flag failures. One is incremented by the 
real-time clock and the other, by a clock in the output electronics. 
Each has to be reset by the software. If the timers run out, the software 
or critical hardware of the computer responsible for resetting them is 
assumed failed and the Channel B computer takes over at that point. 
The timeout is set at 18 milliseconds, so the engine involved is 
"uncontrolled" by a failed computer for less than a major cycle before 
the redundant computer takes over176. 
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Box 4-7: Shuttle Engine Controller Hardware 
The computer chosen for the engine controllers is the Honeywell 

HDC-601. The Air Force was using it in 1972 when the choice was 
made, so operational experience existed. Additionally, the machine was 
software compatible with the DDP 516, a ground-based Honeywell min- 
icomputer, so a development environment was available. Honeywell 
built parts of the controller in St. Petersburg, Florida and shipped those 
to the main plant in Minneapolis for final assembly; within a couple of 
years, all the construction tasks moved to St. Petersburg. By mid-1983, 
Honeywell completed 29 of the computers177. 

The HDC-601 uses a 16-bit instruction word. It can do an add in 2 
microseconds, a multiply in 9. Eighty-seven instructions are available to 
programmers, and all software is coded in assembly language178. The 
memory is 2-mil plated wire, which has been used widely in the military 
and is known for its ruggedness. It functions much like a core memory in 
that data are stored as a one or zero by changing the polarity in a seg- 
ment of the wire. Each machine has 16K of 17 bits, the seventeenth bit 
used to provide even parity179. Plated wire has the advantage of having 
nondestructive readout capability. 

The controllers are arranged with power, central processor, and in- 
terfaces as independent components, but the I/O devices are cross 
strapped. This provides a reliability increase of 15 to 20 times, as 
modular failures can be isolated. The computers and associated 
electronics are referred to as Channel A and Channel B. With the cross 
strapping, if Channel A’s output electronics failed, than Channel B’s 
could be used by Channel A’s cornputerlgo. 

Packaging is a serious consideration with engine controllers, since 
they are physically attached to a running rocket engine, hardly the benign 
environment found in most computer rooms. The use of late 1960s tech- 
nology, which creates computers with larger numbers of discrete com- 
ponents and fewer ICs, means that the engine builders are penalized in 
designing appropriate packages18 l .  Rocketdyne bolted early versions of 
the controller directly to the engine, resulting in forces of 22g rattling the 
omputer and causing failures. The simple addition of a rubber gasket 
reduced the g forces to about 3 or 4. Within the outer box, the circuit 
cards are held in place by foam wedges to further reduce vibration 
effects 182. 

THE FUTURE OF THE SHUTTLE’S COMPUTERS 

The computers in the Shuttle were candidates for change due to 
the rapid progress of technology coupled with the long life of each 
Shuttle vehicle. First to be replaced were the engine controllers. By 
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Figure 4-1 1. A Shuttle main engine in a ground test. The Controller can be seen 
mounted on the left side of the combustion chamber. (NASA photo 885338) 
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the early 1980s, Marshall Space Flight Center began studying a Block 
II controller design because it was becoming impossible to find parts 
and programmers for the late 1960s components of the Block 1183. 
The revised computer uses a Motorola 68000 32-bit microprocessor. 
When selected, it was clearly the state of the art. Instead of plated 
wire, a CMOS-type semiconductor random-access memory is used. 
Finally, the software is written in the high-level programming lan- 
guage, C. Such a computer reflects the current design and components 
of a ground-based, powerful digital control system. The C language is 
also known as an excellent tool for software systems development. In 
fact, the UNIX operating system is coded in it. 

Aside from the processor change, the Block II’s memory was in- 
creased to 64K words. Therefore, the entire controller software, in- 
cluding preflight routines, can be loaded at one time. Semiconductor 
memories have the advantages of high speed, lower power consump- 
tion, and higher density than core, but lack core memory’s ability to 
retain data when power is shut off. Reliability of the memory in the 
Block II computer was assured by replicating the 64K and providing a 
three-tier power s u ~ p l y l 8 ~ .  Both Channel A and Channel B have two 
sets of 64K memories, each loaded with identical software. Failure in 
one causes a switch-over to the other. This protects against hardware 
failures in the memory chips. The three tiers of power protect against 
losing memory. The first level of power is the standard 115-volt 
primary supply. If it fails, a pair of 28-volt backup supplies, one for 
each channel, is available from other components of the system. Last, 
a battery backup, standard on most earth-based computer systems, can 
preserve memory but not run the processor. 

The significance of the evolution to Block II engine controllers is 
that they represent the first use of semiconductor memories and 
microprocessors in a life-critical component of a manned spacecraft. 
Honeywell scheduled delivery of a breadboard version suitable for 
testing in mid-1985. The new controller is physically the same length 
and width, so it fits the old mounting. The depth is expected to be 
somewhat less. When the first of these computers flies on a Shuttle, 
NASA will have skipped from 1968 computer technology to 1982 
technology in one leap. 

IBM’s new version of the AP-101 (the F) incorporates some of 
the same advantages gained by the new technology of the engine con- 
trollers. Increasing the memory to 256K words means that the ascent, 
on-orbit, and descent software can be fitted into the memory all at 
once. (This is not likely to happen, however, because of the pressing 
need to improve the crew interfaces and expand existing functions.) 
Higher component density allows the CPU and IOP to be fitted into 
one box roughly the size and weight of either of their predecessors. 
Execution speed is now accelerated to nearly 1 million operations per 
second, twice the original value. In essence, NASA has finally ac- 
quired the power and capability it wanted in 1972, before the software 
requirements showed the inadequacy of the original AP- 101. 
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As in the engine controllers, the memory in the AP-1OlF is made 
of semiconductors. Power can be applied to the memory even when 
the central processor is shut down so as to keep the stored programs 
from disappearing. A commercially available error detection and cor- 
recting chip is included to constantly scan the memory and correct 
single bit errors. These precautions help eliminate the disadvantage of 
volatility while still preserving the size, power, and weight advantages 
of using semiconductors over core memories185. 

CONCLUSION 

The DPS on the Shuttle orbiter reflects the state of software en- 
gineering in the 1970s. Even though the software was admittedly the 
key component of the spacecraft, NASA chose the hardware before 
the first software requirement was written. This is typical of practice 
in 1972, but less so now. NASA managers knew that time and money 
spent on detailed software requirements specification and the cor- 
responding development of a test and verification program would save 
millions of dollars and much effort later. The establishment of a dedi- 
cated facility for development was an innovative idea and helped keep 
costs down by centralization and standardization. A combination of 
complete requirements, an aggressive test plan, a decent development 
facility, and the experience of NASA, Rockwell, Draper, and IBM en- 
gineers in real-time systems was enough to create a successful Shuttle 
DPS. 

Even as the system took shape, NASA managers looked to the fu- 
ture of manned spacecraft software. Increased automation of code and 
test case generation, automated change insertion and verification, and 
perhaps automated requirements development are all considered fu- 
ture necessities if development costs are to be kept down and 
reliability increased. In the 1980s, a new opportunity for software 
development and hardware selection presents itself with NASA’s 
long-awaited Space Station. NASA has another chance to adopt up- 
dated software engineering techniques and, perhaps, to develop 
others. Success in space is increasingly tied to success in the software 
factory. 
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power and complexity, paralleling the development of computers for 
manned spacecraft. Unlike the manned programs, however, JPL spon- 
sored fundamental research into spacecraft computing, which was 
then translated into concepts that guided the development of flight 
systems. The result was a series of innovative and flexible on-board 
computers. 


