
,.,.

.

Control and Flight Dynamics Conference,
Pasadena, California, August 12-14, 1968.

E-2307

RECOVERYFROMTRANSIENTFAILURESOF
THEAPOLLOGUIDANCECOMPUTER

by
Edward M. Copps, Jr.

A U G U S T 1 9 6 8

R T T w(o)

CAMBRIDGE 39, MASSACHUSETTS
T“i Yr

-.

G U I D A N C E A N D NAVIGATIQN

6s

E-2307

to be presented at the AIAA Guidance,
Control and Flight Dynamics Conference,
Pasadena, California, August 12-14, 1968.

RECOVERYFROMTRANSIENTFAILURESOF
THE APOLLO GUIDANCE COMPUTER

bY
Edward M. Copps, Jr.

AUGUST 1968

CAMBRIDGE 39, MASSACHUSETTS
0 K pf

ACKNOWLEDGEMENT

This report was preparedunder DSR Project 55- 23370 sponsored by the Manned

Spacecraft Center of the National Aeronautics and Space Administration through

Contract NAS g-4065 with the Instrumentation Laboratory, Massachusetts Institute

of Technology, Cambridge, Mass.

The publication of this report does not constitute approval by the National

Aeronautics and Space Administration of the findings or the conclusions contained

therein. It is published only for the exchange and stimulation of ideas.

RECOVERY FROM TRANSIENT FAILURES OF

THE APOLLO GUIDANCE COMPUTER

Edward M. Copps, Jr.

Massachusetts Institute of Technology

Cambridge, Massachusetts

ABSTRACT

In the Apollo Guidance Computer, nearly one
hundred thousand word transfers ccur each second.
A random error rate of one in 10 11 actions would be
considered good in today’s technology, but at that
rate an error might occur within several hundred
hours. Added to the random error rate are
externally induced errors, including power and
signal interface transients, program overloads, and
operator errors. The incidence of induced errors
has so far been very much greater than random
errors (if indeed there have been any at all) in AGC
experience.

The AGC is a control computer, and has been
designed to detect and to recover from random or
induced transient failures. The techniques used are
the subject of this paper.

The paper outl ines the character o f the
computer and its system software to a depth suf-
ficient for the discussion. The built-inmalfunction
alarm logic is discussed, along with the software-
based computer Self Check. These systems, upon
detection of a failure, force an involuntary re-
ordering of the signal interface, and an involuntary
transfer to the restart program logic. From this
point, the software, without recourse to suspect
information in the central processor, reconstructs
the output interface conditions, and reconstitutes the
control processes in progress at the time of failure.
Thereare a number of groundrules which limit the
recovery capability, based on presumptions about
the nature of the failure, These are presented.

The software associated with a restart is
described, with a typical program flow derived from
an Apollo Mission Program. The amount of memory
assigned to restart protection is stated. Several
interesting sidelights are briefly discussed such as
manual break-in to prevent restart looping, the
adoption of the restart technique for scheduling the
termination of active programs, and the use of the
failure recovery technique to remove a temporary
computer overload.

I . Introduction

The Apollo Guidance Computer (AGC) is part of

the Guidance, Navigation and Control System of the

Apollo Spacecraft. There aretwo systems, one in the

Command Module and one in the Lunar Module. This

paper is about the restart feature of the hardware

and software. The intent of the paper is to explain

what restart protection is, why it is done, what things

1

might have been done instead and implications, large

and small, of various design decisions.

Thename restart refers to a built-in recovery

procedure which responds to hardware detected

computer malfunctions. Basically, the hardware

transfers control to a specific location in the AGC

memory. The software then restarts the programs

in progress by reference to stored data which points

to the last restart point passed by each program

before the malfunction was detected.

II. The Apollo Guidance Computer
The AGC is a control computer. It receives

incremental angular and velocity information from

an Inertial Measurement Unit, from a telescope, a

sextant, and in the case of the Lunar Module it

receives range, range rate and angular data from a

Rendezvous Radar and a Landing Radar. There is a
Display and Keyboard (DSKY) which is illustrated in

Figure 1. There is an uptelemetry receiving system,

and a downtelemetry system.

Figure 1 Display and Keyboard Assembly

There are a number of discrete signals sent and

received, indicating, for example, such events as

liftoff, accelerometer failure, a-rd vehicle stage

separation.

The computer directly controls the numerical

displays, the rocket engine gimbals, the attitude jet

commands, angular commands to the radar, optics,

and inertial measurement unit, attitude error

displays, engine throttle and engine on/off com-

mands, among other things.

The computer performs many functions, almost

all of which are variations on four purposes:

1. to maintain and improve knowledge of

position and velocity,

2 . to compute changes in positions ani velocity

by thrust vector control to carry out various

mission phases,

3. to control vehicle attitude, and,

4. to compute and display a wide variety of

information necessary for astronaut control.

All of these functions are under the control of

the astronaut, through the DSKY. There are about 40
separate programs available to him. These

programs are function oriented, and are strung
together by theastronaut according to his needs by

a succession of keyboard actions. In addition to the
programs, there are approximately 30 routines

which can be run simultaneously with the programs
to yield information as desired. In general, only one
program can occupy the machine at one time. There

is an exception to this which will be discussed in

detail later because it is relevant to the restart

program.

The progress through a program or a routine is

characterized in most cases by a sequence of

displays. There are many decision points, at which

the relevant data is displayed and a flashing an-

nouncement indicates that an astronaut response is

required. The usual astronaut response is to

Proceed with the computational path and values

displayed.

Provision is made to put programs “to sleep”

until a desired response or other necessary external

event occurs. The display system is a special and

intricate part of the AGC software, since display

information, possibly requiring an astronaut res-

ponse, may be “buried” under display information

generated by an auxiliary routine, which in turn may
have been interrupted by a priority display, or by

astronaut keyboard activity. There is aKey Release

light which informs the astronaut about buried

information.

,

III. AGC Memory

The AGC memory is composed of three

significantly different components. The first

consists of 36,864 words of non-alterable program

storage, called fixed memory. The contents of the

memory locations are fixed at manufacture time.

The question of content is one of physical threading
or bypassing of wires through a sequence of tape

wound magnetic cores. Restart protection presumes

that fixed memory is intact.

There are 2040 words of program-alterable

memory, called erasable memory. These consist of

a conventional destructive read out ferrite core

matrix. The question of content is one of the polarity

of magnetic fluxset in theindividual core. Restart

protection presumes that erasable memory is intact,

although a small portion is redundantly stored and

compared during a restart.
Table 1

O”O0”

0000 1

On”02

00003

O”O”4

00005

00006

1?.EGISTER
NAME
~-__

A

L

Q

FB

FB

z

BE

REMARKS

Erasable Rank Rrgistrr F l i p - F l o p

Fixed Bank Register Registera

Next Address Regint~r

Roth Rank Regl~ters

TYPE

There are seven Central registers, designed for

high speed operation. The names of these registers

are in Table 1. These registers are composed of flip

flops, formed by interconnecting logic NOR gates,

with content dependent on continuity of electrical

signal from the time thememoryis set, to the time

that it is read. Restart protection presumes that the

content of these registers may have been destroyed.

2

There are sixteen input/output channels,

similar to the central registers, employing logic flip

flops.

IV. The AGC Software Operating System

There is one central processor. There is an

Executive program which schedules Jobs, according

to program assigned priority. Each Job is required

to periodically interrogate the NEW JOB register

which indicates the presence of Jobs of higher

priority. If there is a Job of higher priority awaiting

execution, the current Job is replaced. At the

completion of a Job, Jobs of successively lower

priority are executed until finally the Job of lowest

prior i ty cal led DUMMY JOB is cont inuously
executed. A computer Self Test program, designed

to test the reading of fixed memory and the reading

and writing of erasable memory can be executed

during this time. When a Job request is made, a fixed

length set of erasable core is assigned to that Job and

is kept intact until the Job is terminated. Once a Job

is active, it is not possible to recognize it among the

other Jobs in various stages of completion in the

Executive. This is a difficulty when, as is frequently
necessary, a subset of Jobs active in the Executive

must be terminated.

V. Interrupt Mode

There are several events, such as a keyboard

depression, the overflow of various timing counters,
the availability of data at the radar interface, etc.,

which cause an involuntary transfer of control to

specific locations in the AGC. The computer is then

operating in interrupt mode. After storing away the

information needed to continue the interrupted
program, the interrupt program either can complete

a short computational task before exiting from the
interrupt mode, or it can set up a Job to be done by

the Executive after terminating the interrupt.

There are several timing registers which can

be set under program control, and which cause

interrupts when they come due. These are used to
schedule time critical events. An example is TIME

3: when the TIME 3 register overflows, it means

that a so-called Task must be executed. This Task

is performed under interrupt. The Waitlist program

isused toset the TIME 3 counter and to maintain a

list of starting addresses for these Tasks. A typical

example is the READACCS Task during powered

3

flight. This Task reads the accelerometer velocity

increment registers, makes a Job request to the

Executive which will complete a rather lengthy

series of computations, makes a request to the

Waitlist to reschedule itself for 2 seconds from now

and then terminates the interrupt mode. When this

happens, the Executive resumes where it left off,
unless another interrupt has occurred in the

meantime. There is an instruction, INHINT, that

delays interrupts until execution of a n o t h e r

instruction, RELINT.

A restart may be considered to be a special case

of interrupt. However this and only this event will

interrupt a program already operating in interrupt

mode, or a program operating with interrupt
inhibited. Also, restart does not return control to

the interrupted program.

VI. Need For Restart

In the AGC, nearly one hundred thousand word

transfers are performed each second. A random
error rate of one in 10 1 2 actions would be considered

good in today’s technology, but at that rate, an error

might occur within several hundred hours. Added to

the random error rate are externally induced er-
rors, particularly power transients. The possibility

of error presents a requirement for a means of

recovery, for the AGC itself would still be perfectly

useful given that it could be re-initiated into the

program. To meet the need for re-initiation, the

AGC is equipped with a restart feature comprising
alarms to detect malfunction and a standard

initiation sequence which leads back into the

programs in progress.

VII. Logic Associated With Restart
A restart is caused by a detected computer

m a l f u n c t i o n . When a restart occurs there is an

immediate involuntary transfer of control to location

4000, in fixed memory. Also several signals internal

to the AGC are set to insure a known logical state.
All the output channels, which include the following

functions, are reset (cleared):

a) individual jet commands
b) display relay commands
c) engine off and engine on comm.mds

d) various warning and status lights
e) various moding commands to other space-

craft systems

f) engine gimbal motion commands

g) down telemetry word in process of trans-

mission

Clearing these output channels at least places
the interface in a known condition. Otherwise,

because of the restart, it is not certain what their

status would be. It is left to the software to

reconstruct the correct output interface as rapidly

as possible.

The coding following the transfer to location

4000 is designed to reinit ial ize the system

programs. Incremental clocks are set to get rapid

interrupts to start the various time dependent

functions. Jobs in the Executive and Tasks in the
Waitlist are cleared out. The display panel is
blanked except for the restart light. The various

discrete monitors are started. The digital autopilot

is initialized. The desired state of the engine is

checked and the output bit is properly set.

Following this sequence, the program tests a
phase pointer for each of five restart groups. Since

there may be several Jobs in progress, running

without synchronization, it is necessary to be able to
advance restart points in different programs
independently. To handle this, there are five
independent restart groups, each with its own phase

pointer. Jobs and Tasks that may run simultaneously

must be in different groups. The pointers are stored

redundantly. If each phase pointer passes a

redundancy check, the pointers are used to restart

the groups.

L

MAJOR TASKS FOLLOW I NG A RESTART:

a) Save diagnostic informat ion,

b) Make executive and waitlist dormant,

c) Initialize the system program,

d) Check for lock out,

e) Test erasable,

f) Determine if programs were in pro-
cess and where to re-enter them.

VIII. Malfunction Detection Devices

There are six malfunction detection devices that
cause a restart. They are discussed below.

Parity failure detection is the most powerful.

A single odd-parity bit is added to each fixed-

memory word at manufacture time, and to each

erasable word at write time. Parity is tested at read

time. If the test is failed, the restart sequence

begins.

The Night Watchman failure detection works as

follows: the NEW JOB register, mentioned earlier,

must be periodically tested by any program which is

following the rules which make the Executive work.

This register is “wired” and if it is not tested often

enough, the Night Watchman circuit causes a restart.

The TC Trap detects the endless one-

instruction loop caused by transferring control to a

location L which contains the instruction “transfer
control to location L”.

The Oscillator Fail is caused by a stopping of
the timing oscillator.

The Voltage Fail circuits monitor the 28-, 14-,
and 4-volt power levels which drive the computer.

Rupt Lock detects excessive time spent in

interrupt mode, or too much time spent between

interrupts.

IX. Assignment of Restart Points

At the time of the detected malfunction, the

computer may or may not be in interrupt mode. In
any case, there was a list of Jobs and a list of Tasks,

with associated incremental times, awaiting ex-

ecution. An uncompleted interrupt mode program is

usualiy not restarted, with the exception of Tasks

and certain autopilot functions. This means that a

downtelemetry word may be garbled, or a key

depression may have to be repeated. The restart

pointers allow the restart program to pick up proper

Job and Task information for a proper restart of the

active programs.

4

Lists of such restart informationare stored in

fixed memory.’ The lists are called Restart Tables.

During the execution of the program, a pointer is

advanced to successively point at the proper restart

information for that phase of the solution. This is

part of the design of the program.

As an alternative to setting a pointer to pick up

the information from the proper point in the phase

table, other options are available. Often, the
instruction that began the last display sequence is an

acceptable restart point. This is also a convenient

place since the same information relevant to
restarting the program must be saved by the Display

Program for its own purposes. This type of restart

is frequently used and has a special defining format.

Another frequently used technique is to define the

restart point to be the instruction to be executed

next. This does not require use of the Restart Table.

It is occasionally necessary to simultaneously
restart combinations of Jobs and Tasks. In other
circumstances it is necessary to specify the restart

information indirectly, that is, the restart pointer
picks up the address where restart information can

be found instead of picking up the information

directly.

The information for defining a restart point is

packed in binary statements which are decoded by a

subroutine. The subroutine advances the pointer or

performs whatever other operations are needed to

make provision for a possible restart. Thus,
between invocation of this subroutine, the in-

formation a3out how to restart the software waits,

stored in erasable locations, until the mainline

programs again use the subroutine to advance the

restart information.

X. Testing for Restart Protection

Restart logic is tested during the development

of a flight program by causing restarts to happen at

specified times during simulations of mission
sequences. These SimUhtiOnS are at the instruction

level of the AGC and provide detailed checks on

program design. Restarts can also be caused during

simulation using a real AGC connected to test

equipment. These restarts are benign, in the sense

that there is no malfunction, and therefore no

possibility of destruction of memory between

malfunction and detection. There is no ability at

present to insert the restart between specified

instructions, although this would be a useful test

option.

There has been some discussion and prelimin-

ary planning of a “Restart Analyzer” which examines

the code at simulation time to detect and complain

when the execution of the instruction violates

restartability rules. There are several problems to

implementing such an analyzer; first, the statement

of a set of sufficient conditions has not yet been

achieved; secondly, the analyzer would greatly
increase the run time of a simulation, although it

would probably decrease total test time.

Figure 2 is an example of one of the many tests

that such an analyzer would have to make.

I
A

New instruction to be executed by simulator I

Does this instructmn tpst a location
I

Does this instruction
set a tagged location?

Complntn: Restart will
fail beyond
this instruc-
tion.

f

Tag this location

The notatton “tested’ Includes all oprnttona vhtch USC the Mormstion

In the locatton. Other la,$cal teats would be ,-equlrcd to detect u,,e al central

re(ltaters wtthout ftrst metttng the,,,, aetttng a restart p.,,nt when Interrupt i.,

tnhtblt, and a aet of testa assoctated vtth rcstnrttng Jabs and Tasks.

Figure 2

X I . ?.pplication of Restart Techniques for the

Control of Program Sequencing
Rendezvous Navigation uses measured data to

update knowledge of relative position and velocity.

The information is a combination of angle, range and
range rate information from various devices on the

spacecraft. This program in the AGC is called P20.

5

Rendezvous Targeting uses various algorithms

to compute velocity changes required to complete

the rendezvous. There are several targeting
programs, which correspond to different techniques

and phases of rendezvous. In all there are six
astronaut-callable programs that do Rendezvous

Targeting.

During the development of the specifications

for these programs, it became apparent that the time

spent in the targeting programs should also beused

for navigation measurements, Thus a requirement

existed for simultaneous running of P20 and one of

the various targeting programs, say P34 (Transfer

Phase Initiation). It soon became apparent that it was

important to be able to start and stop navigation and

targeting functions independent of each other.

The mechanization of this simultaneous pro-

gram capability, including the ability to selectively

terminate part of the functions, is similar to the

procedures used in recovering from a detected

nalfunction. When any program is to be terminated,

all future Tasks yet to go active are cleared out of

the Waitlist. All Jobs whether they are currently

active, sleeping, or waiting for their priorityto come
to the top, are terminated. Then, the restart group

or groups associated with the functions that are to be

continued are restarted. That is, they are activated
according to the Restart pointer associated with that

group.

Another example of the application of this

technique occurs during powered flight where, in at

least one non-predictable circumstance, all func-

tions, no matter what their stage of completion, have

to be terminated, except for the integration of

position andvelocity. This is easily implemented by

terminating all computations and restarting the

restart group associated with integration.

Thus the logic associated with restart protec-

tion serves a significant function independent of the

question of attempting to recover from detected

hardware failures. There are, of course, other

design paths that could have been followed to obtain
the ability to selectively terminate active programs.

It is interesting to note that the Executive system,

which does not maintain a record of starting ad-

dresses (or other clues as to the origin of the Job)

beyond the time when a Job is first started, probably

strongly influenced the decision to selectively

terminate Jobs by the restart technique.

XII. Software Abort Conditions

Programming dead ends, which are not expected

to be encountered in a checked-out program, under

proper use, are broken into two categories; the first

and largest category involves conditions which

probably will recur again and again if the program

is restarted. These conditions are handled by

abandoning the program in progress and flashing a

request to select another program. Also an alarm
light is lit and, by keyboard action, the astronaut can

find ,the code number of the alarm that caused the

program abort.

There is a small class of problems centering

arouncj overloading the Executive or Waitlist, where

it is likely that trying the program again via the

restart logic will be successful. This is done. A

large class of auxiliary programs called Extended

Verb Routines can, through astronaut keyboard

command, be run simultaneously with a program. If

an Executive overload occurs, and if the condition is

partially the result of a so-called Extended Verb
Routine, restart will solve the problem because, by

design, extended verbs are not restartable.

However, to differentiate the procedure from

hardware malfunctions, the restart warning light is

not lit.

XIII. Diagnostic Information

The contents of the program counter and the

bank registers, which together point to the

instruction that was being executed when a restart

occurred, are saved by software means. They may,

however, have been destroyed by the malfunction.

It is not possible to differentiate between the

various malfunction detectors while the computer is

in a flight configuration. There is information

brought out through a test connector which permits

isolation to a particular failure detection mechanism
during ground test.

6

Thereis, of course, the possibilitythat restarts
are self-generating. If the same problem still exists

on re-executing the code, there is a potential endless

loop. Inview of this, it would probably be better to

store away the diagnostic information only once, on

the first pass through the restart logic. There is a

register which is incremented on each pass through

the restart logic.

XTV. Protection Against Endless Loops

Since the restart logic tries to do a piece of

program over again, the probability of endless

looping must be dealt with. When this occurs, the

loop can be so tight that ordinary means of control-

ling the computer are not available. For example,

the Display Keyboard, or the telemetry input

programs, are not serviced. Even turning off the

computer does not necessarily break the loop.

Therefore, the first thing that is done in the restart

logic is to check for a simultaneous depression of

two buttons (input keys). If the user depresses these

keys, the logic diverts the program to an inert
condition, called Fresh Start.

XV. Self Test versus the Restart Philcsophy
Self Test tests the ability to read and write into

erasable locations. The process consists of storing
the contents of an erasable location in another

location, writing and reading all zeros, then, writing

and reading all ones, then retrieving the original

contents and writing back into the register.

Self Test presents an interesting dilemma when

juxtaposed against the philosophy of restart

protection. There are two reads and two writes (the

ones and zeros) that if unsuccessfully completed will

be detected. On the other hand, there are two reads

and two writes that must be successfully completed

at each test in order not to destroy the contents of the

register. Self Test cannot itself detect an error in

this part of its operation. If a transient failure

occurs while Self Check is testing erasable, there is
as much chance that the contents of a register will

be destroyed as there is that a transient failure will

be detected and erasable memory preserved. If

there has been a hard failure, self test will detect it,

and the contents of the register are not as important

as finding the failure. Parity detection enters into

this discussion, since at least half, and probably

much more than half, of all read and/or write errors
will cause parity failure, which will itself cause a

restart. This does not alter the fundamental point

that if transient failures are significant enough to

necessitate designing restart logic, then running Self
Test has a significant chance of destroying erasable

information. Thus searching for hard failures by

testing read and write logic may cause undetected

destruction of memory due to transient failures.

Probably the best thing to do is to do Self Test before

beg inn ing significant mission phases, but not

otherwise.

XVI. Will Restart Work?

If a computer failure is such that erasable

memory information is still intact, and if the failure

is indeed transient, then there is great confidence

that the restart logic will bring the program through
the transient.

Will the failure mechanism be so generous? Ws

do not know. No restart has occurred in flight.

Those that have occurred in test have occurred with

non-rigorously checked-out test programs and are

usually traced to software-invoked TC TRAP

failures. This was the method of dealing with

program “dead ends” and is no longer used. Little

definite information is available.

We can gain some feeling for the problem by

considering the mechanism used to detect the

m a l f u n c t i o n .

If there is a parity failure on reading fixed
memory, the chances of recovery are very good.

This is because the failure would not destroy the

memory, and a subsequent attempt will be successful

if the failure mechanism has disappeared. More

important, the failure is detected immediately,

before other damage is done.

A parity failure on reading an erasable location

has far less chance of successful restart because the

contents of the erasable is suspect, since the

memory is a destructive read system, and the
register is refilled with the word that just failed

parity with the parity bit corrected.

If the restart is caused by detecting a TC TRAP memory should still be initialized at the earliest

or a Night Watchman alarm, it is likely that the convenient time. Self Test should be run, and all ’

actual failure has occurred many, many, many other means of diagnosis should be called upon. The

instructions ago, and that the program has been computer should not be presumed defective although,

running wild for a considerable time. Under these depending on the flight circumstances, the best

circumstances it is not likely that erasable memory strategy might be to go to backup equipment until

is intact. confidence in the computer can be reestablished.

If the restart is caused by a detected voltage

dropout, there is enough capacitance in the power

circuits to keep the central registers intact until the

completion of the current memory cycle. Therefore,

transfers of information to erasable memory will be

completed with good information. Intentional

failures of power levels have been tried with suc-

cessful results, and unplanned voltage dropout is the

failure most often experienced in ground checkout.

Of course, the oscillator also stops, so that there is

an unknown time mismatch between the AGC clocks

and real time. There is no wayto correct this within

the ground rules of restart, but ground tracking can

detect and correct this loss of time synchronization.

Thus, the chances of a successful restart vary

greatly with the source of the detected failure. There

are two failure mechanisms that seem to offer the

best chance of successful restart, It is important to

note that these two failures could be handled by

hardware circuits as an alternative to the approach

described in this paper. First, parity failure on

reading fixed memory. This could be dealt with by

reading the location again, which would be much

simpler. Second, voltage transients could be solved

by saving flip flop information, then letting the AGC
start up where it left off.

XVII. Wha?. Should the Astronaut Do if the Restart

Light Comes On?

If a restart occurs in flight, the astronaut and

the ground will be warned by a restart light on the

DSKY. Furthermore, the G&N-Caution Light will

come on, and if a sequence of restarts occur in a

short interval, the AGC Warning Light will come on,

along witha light called the Master Warning Light.

The program may or may not give evidence of

memory loss. If it does, then erasable memory

should be reinitialized with help fromthe ground. If

the program continues to work well, erasable

XVIII. The Cost of Restart Protection

The principle involved in the development of

this program is simple. If a detected hardware
malfunction occurs, then, since it is highly likely that

the failure is transient, it is worthwhile to try to

continue the computation. The alternative is to
abandon the computer until a new erasable load is

transmitted to the ground. The specific techniques
developed are complicated and increase the dif-

ficulty in delivering checked-out flight software.

Some of these effects can be described quantitative-

ly- First, the programs associated with restart

occupy 1048 locations of the 36,864 words of fixed

memory.

Programs that are restart protected must

contain phase *update instructions. These occupy 334

locations in fixed memory. Thus about 4% of the

memory budget is assigned to restart protection.
There is an indirect memory cost associated with

designing a program to be restartable.

In terms of testing, some 40% of program testing

and 1% of mission phase testing includes restart

testing.

There is another cost. Restart protection

requires a knowledge of the overall working of the

machine, and an intimate knowledge of areas of

programthat would otherwise not be of significance
in the development of a particular software program

region.

XIX. Conclusion

The establishment of restart protection in a

computer suchas the AGC presents somewhat of an
enigma. In a total of over 25 hours of space flight,

the computer has yet to have a transient failure from
which the restart feature could be called on to

demonstrate its worth. This could well be the

8

experience for thewhole Apollo program. We have

seen that the provision for restart in the computer

program complicates the generation and test of

program. We have seen that there is a significant

class of transient failure events which restart will

probably fail to cure. And yet only one successful

recovery by restart might save a mission.

REFERENCES

For a general description of the Apollo Guidance
ATavigation and Control System, see Space Navigation
Guidance and Control, Miller, J.E. et al, Techni-
vision Ltd., Maidenhead, England, 1966.

For a detailed description of operational use of
the system see Martin and Battin, “Computer
Controlled Steering of the Apollo Spacecraft”,
Journal of Spacecraft and Rockets, vol. 5, no. 4,
April 1968.

ACKNOWLEDGEMENT

This report was prepared under DSR Project
55-23870, sponsored by the Manned Spacecraft
Center of the National Aeronautics and Space
Administration through Contract NAS 9-4065 with
the Instrumentation Laboratory, Massachusetts
Institute of Technology, Cambridge, Mass.

The publication of this report does not constitute
approval by the National Aeronautics and Space
Administration of the findings or the conclusions
contained therein. It is published only for the
exchange and stimulation of ideas.

9

E-2307

DISTRIBUTION LIST

P. Adler

J. Alekshun

R. Bairnsfather

R. Battin

E. Blanchard

G. Cherry

E. Copps

s . copps

J. Dahlen

D. DeWolf

G. Edmonds

A. Engel

P. Felleman

J . F l e m i n g

G. Fowks

K. Glick

E. Grace

K. Grenne

nl. Hamilton

J. Hand MIT/GAEC

T. Hemker MIT/NAR ~-

J. Henize (5)

D. Hoag

F. Houston

B. Ireland

T . Isaacs

L. B. Johnson

M. Johnston

J . Kernan

K. Kido

xi. J. Kingston

A. Kosmala

W. Kupfer

A. Laats

L. Larson

R. Larson

T. Lawton MIT/MSC ’

G. Levine

D . Lickly

F. Little

R. Lones

W. Marscher

F. Martin

R. McKern

H. McOuat

R. Melanson

D. Millard

J. E. Miller

J. S. Miller

J. Morse

J. Nevins

J. O’Connor

J. Parr

P. Philliou

c . P u

R. Ragan

W. Robertson

P. Rye

J. Saponaro

C. Schulenberg

N. Sears ,

G. Silver MIT/KSC 1, ,”

B. Sokkappa

W. Stameris

G. Strait MIT/KSC I’

G. Stubbs

M. Sullivan

J. Suomala

J. Sutherland

W. Tanner

R. Tinkham (3)

M. Trageser

J . Turnbull

J. Vella

K. Vincent

J. Vittek (4)

H. Walsh

R. Weatherbee

R. Werner

R. White

W. Widnall

C. Wieser

M. Womble

R. Woodbury

Apollo Library (2)

MIT/IL Library (6)

:::Letter of transmittal only

External:

NASA/RASP0

AC Electronics

Kollsman

Raytheon

Capt. M. Jensen (AFSC/MIT)

MSC: (21&1R)

National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas 77058
ATTN: Apollo Document Distribution Office (PA2) (18&1Rb

/

C. Frasier (22,
T . G i b s o n (1),- / !

KSC :

National Aeronautics and Space Administration
J. F. Kennedy Space Center
J. F. Kennedy Space Center, Florida 32899
ATTN: Technical Document Control Office

(1R) *

L R C : (2)-

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia
A T T N : M r . A . T . RIattson

GAEC:

Grumman Aircraft Engineering Corporation
Data Operations and Services, Plant 25
Bethpage, Long Island, New York
ATTN: Mr. E. Stern

NAR:

North American Rockwell, Inc.
Space and Information Systems Division
12214, Lakewood Boulevard
Downey, California
ATTN: Apollo Data Requirements

Dept. 096-340, Bldg. 3, CA 99

NAR RASPO:

NASA Resident Apollo Spacecraft Program Office
North American Rockwell, Inc.
Space and Information System Division
Downey, California 90241

AC RASPO:

National Aeronautics and Space Administration
Resident Apollo Spacecraft Program Officer
Dept. 32-31
AC Electronics Division of General Motors
Milwaukee 1, Wisconsin
ATTN: Mr. W. Swingle

GE RASPO:

(3&1R) _

(8BilR)

(1)‘

(1)

(1) ’

NASA Daytona Beach Operations
P.O. Box 2500
Daytona Beach Florida 3 2 0 1 5
ATTN: Mr. H. Lyman

