
GUIDANCE, NAVIGATION
AND CONTROL

Approved: Date :
ELDON C. HALL, DIRECTOR, DIGITAL DEVL.

Approved:

VIGATION PROGRAM

Approved:

E-2065 ~ ,

BLOCK I I AGC SELF-CHECK A N D SHOW- BANKSUM

by
Edwin D. Smally

December 1966

I N S T R U M E N T A T I O N
LABORATORY

CAMBRIDGE 39, MASSACHUSETTS-

.

ACKNOWLEDG.EMENT

This report was prepared under DSR Projec t 55-23850,
sponsored by the Manned Spacecraft Center of the National
Aeronautics and Space Administration through Contract NAS 9-

4065.

The publication of the repor t does not constitute approval by
the National Aeronautics and Space Administration of the findings
or the conclusions contained therein. It is published only for the
exchange and stimulation of ideas.

2

A D D E N D U M 1

E-2065

BLOCK I I AGC SELF-CHECK AND SHOW-BANKSUM
by

E. D. Smally
December 1966

The SELF-CHECK routine as found in Sunburst 206 is essentially as described
in E-2065 with the exceptions noted below.

A. Initialization of SELF-CHECK Reserved Erasable

F r e s h Start does not c l ea r SFAIL o r ERCOUNT. ERESTORE is cleared by
F r e s h Start. Restar t does not c lear SFAIL.

It may be desirable to c lea r ERCOUNT, by keyboard, a f t e r doing Verb F r e s h

Start .

B. Alarm Display

A SELFCHECKinitiatedprogram a l a r m tu rns on the program a l a r m light and
displays the FAILREG set (Noun 50). The FAILREG set, (FAILREG, FAILREG +1,

FAILREG +2), displays the a l a r m codes of the first, next to last , and last program
failure. The a l a r m code for SELF-CHECK is still 01102. If additional information
is desired, the opera tor may display Noun 31, the ALMCADR set , (ALMCADR,
ALMCADR +1, ERCOUNT), The contents of ALMCADR, if SELF-CHECK was the

las t failure, is equal to 1 + address of the fai lure (the contents of SFAIL), ALMCADR +l

the contents of BBANK for SELF-CHECK (76002), and ERCOUNT the number of SELF-
CHECK fa i lu res since ERCOUNT was last cleared. If the contents of ALMCADR +I

is not 76002, due to an intervening fai lure by a program other than SELF-CHECK, the
contents of SFAIL (machine address 01357) could then be displayed directly.

C. ERASCHK

This pa r t of SELF-CHECK makes s u r e that it is possible to read a "1" and a
I I I I 0 into and out of each bit position of erasable memory.

ADDENDUM 1 (E-2065) Page 2

In the event that a RESTART occurs in the midst of ERASCHK, the RESTART
subroutine does a FRESH START if a se t of erasable r eg i s t e r s were being checked.
The reason fo r the FRESH START is that ERASCHK has just contaminated two erasable
regis ters , and the EBANK information needed to identify and res to re them has been
destroyed by the lead in to the RESTART program (this problem has been corrected in
the 258 mission program). The RESTART program tests reg i s t e r ERESTORE and if
ZERO, proceeds with RESTART, otherwise it goes to DOFSTART (program FRESH
START).

The non-special erasable r eg i s t e r s are checked for co r rec t addressing and con-
tent by placing thei r own address in two successive reg i s t e r s and making su re the re
is a difference of -1 when the contents of the lower address r eg i s t e r is added to the
complement of the higher address regis ter ; if it is not, th is subroutine performs a
TC to the PRERRORS subroutine, The previous contents of the erasable r eg i s t e r s
had been preserved and are res tored to the two reg i s t e r s by PRERRORS which then
performs a TC to the E r r o r s subroutine.

If the difference is -1, the contents of the two reg i s t e r s are complemented and
the complement of the lower reg i s t e r added to the contents of the higher regis ter ;
the resul t is checked fo r -1. If the resul t is not -1, T C to PRERRORS as noted above.
If the resul t is -1, r es to re the previous contents to the two regis ters , and proceed to
the next iteration. The higher address r eg i s t e r of the past iteration becomes the lower
address regis ter of the next iteration. The erasable memory banks are checked f r o m
ze ro through seven with common erasable (60-1374) being checked a f t e r each erasable

bank.

D. Future Reassemblies

Future reassembl ies of Sunburst w i l l not be protected by cuss if a bank is loaded
to the point of not leaving room for the two TC selfs normally preceeding the Bugger
word. The 206 version of SELF-CHECK requ i res the two TC selfs in o r d e r fo r
ROPECHK o r SHOWSUM to work with the resulting program. (The 258 version of
SELF-CHECK does not require the two TC sel fs for ROPECHK o r SHOWSUM to work.)

E-2065

BLOCK I1 AGC SELF-CHECK AND SHOW-BANKSUM

ABSTRACT

This repor t is in two main sections. The first section contains the operating
procedures to be uti!i.n.-d by persons using the SELF-CHECK or SHOW-BANKSUM
routines. It a lso has block diagram flow char ts which should help explain how the
operating procedures of SELF-CHECK may be used fo r diagnostic purposes. The
procedures f o r SELF-CHECK a r e slightly different in BLOCK I and BLOCK 11 while
the procedures fo r SHOW-BANKSUM are the same.

The second sectionof this repor t goes into an explanation of SELF-CHECK
and SHOW-BANKSUM. The explanation of SELF-CHECK consists of an explanation
of the computer internal selfcheck and an explanation of the check of the DSKY
electroluminescents. There is a separa te description of each subroutine in SELF-
CHECK and SHOW-BANKSUM. There is a lso a separa te flow chart, located in the
appendix, for each subroutine. This section should prove helpful to field engineers
in locating the cause of malfunctions in the computer.

A l l numbers in th is report a r e octal unless specifically mentioned otherwise.

The two subroutines that check the multiply and divide ari thmetic functions
of the computer w i l l be removed f rom flight ropes. Figure 1 shows that placing a
&6 o r rt7 in the SMODE regis ter w i l l allow the computer to loop in ei ther the
ari thmetic multiply o r ari thmetic divide subroutines if these subroutines are par t
of SELF-CHECK. Placing a k 6 o r 5 7 in the SMODE reg i s t e r wi l l exerc ise the internal
computer self-check when these two subroutines a r e removed f rom SELF-CHECK.
Thus, k6, *7, o r ~ 1 0 all perform the same function when thear i thmet ic multiply and
ari thmetic divide a r e removed from SELF-CHECK.

by Edwin D. Smally
December 1966

3

1

TABLE OF CONTENTS

Page

PART I. OPERATING PROCEDURES FOR SELF-CHECK AND
SHOW-BANKSUM

CHAPTER

1 SELF-CHECK OPERATING PROCEDURES

2

Options Available in SELF-CHECK
Procedure to Start SELF-CHECK
Malfunction Indication
Changes (if any) in SELF-CHECK Options When a
Malfunction is Detected
How to Use the DSKY to Monitor SELF-CHECK

SHOW-BANKSUM OPERATING PROCEDURES

Procedure to Star t SHOW-BANKSUM
Procedure to Display Next Bank
Procedure to Stop SHOW-BANKSUM

PART 11. EXPLANATION O F SELF-CHECK AND SHOW-BANKSUM

3 EXPLANATION O F COMPUTER INTERNAL SELF-
CHECK
c h e c k ofs
TC+TCF
CCSCHK
BZMFCHK
RESTORE1
RESTORE2
RESTORE3
BZFCHK

7

11

1 3

15

15
15
15

17
18
19
19

19
19
20
20
20

5

DXCI-I+DIM
DAS+INCR
MPCHK
DVCHK

MSUCHK
MASKCHK
NDX-t-SU
D- -SC

D--LCHK
ADDRCHK
RUPTCHK
IN-OUT1
IN-OUT2
IN-OUT3
Check of Special and Central Regis ters
COUNTCHK
0-UFLOW
Check of Erasable Memory
ERASCHK
CNTRCHK
CYCLSHFT
Check of Rope Memory
ROPECHK
Check of Multiply Arithmetic Function
MPNMBRS
Check of Divide Arithmetic Function
DVlCHK
DVZCHK
DV4CHK
DV5CHK

4 EXPLANATION O F DSKYCHK

5 EXPLANATION O F SHOW-BANKSUM

APPENDIX

6

Page
20
20
21

2 1
21
21
2 1
21
21
2 1
22
22
22
22
22
22

23
23
23
24
24
24
24
25
25
25
26
26
26
26

27

29

31

r

OPERATING PROCEDURES FOR SELF-CHECK AND SHOW-BANKSUM

PART I

r

CHAPTER 1

SELF-CHECK OPERATING PROCEDURES

There are 19 possible options in this BLOCK I1 version of SELF-CHECK.
These options a r e explained far ther on in this report . The f i r s t 18 options are used
to check the internal operation of the computer (20 to f 1 0) while the 19th option (211)
checks the electroluminescent displays on the DSKY. It is felt that most people
will use the options associated with t l 0 o r - zero since all three of these options pe r-
form a complete internal self-check of the computer, however, these three options
perform different diagnostic functions when an e r r o r is detected. The options as-
sociated with 21 to 27 check out various pa r t s of the computer and w i l l be useful f o r
field engineers or other personnel interested in diagnostic testing of the computer.

The normal use of SELF-CHECK is as a backup routine to check the computer
continuously when the computer is not busy with other routines. The 210 o r - zero
options can be used for this purpose.

Options Available in SELF-CHECK

The different options of BLOCK I1 SELF-CHECK are controlled by putting
different numbers in the SMODE regis ter (normally during the SELF-CHECK start
procedure); this is the s a m e as BLOCK I. However, i t should be noted that the op-
tions are not the same in the BLOCK I and BLOCK I1 computers.

Placing a +O in the SMODE regis ter forces the computer to go into the backup
idle loop where it continuously looks for a new job.

Placing a +NON-ZERO number below octal 12 o r -0 number in the SMODE
reg i s t e r s t a r t s one of the active options of SELF-CHECK. Below is a description of
what par t (s) of the computer the options check. A block diagram in Figure 1 on the
next page shows the options available and indicates the number to put in the SMODE
reg i s t e r fo r the desired option.

+1 octal: checks all pulses possible by internal control of the

+2 octal: checks all the IN-OUT instruction pulses.
+3 octal: checks SC reg i s t e r s and all bit combinations.

computer.

7

I I
I
I

*l
CHECKED (INCLUDES IN-OUT PULSES)

I I

I I

I "L"
*3

I- ___

1
*5 FIXED MEMORY

7- +
*7 ARITHMETIC DIVIDE

*l,l *[
4

put +O in SMODE
(go to backup idle loop)

Fig. 1 OPTIONS O F SELF-CHECK

The numbers associated with the options represent the contents of the
SMODE regis ter .

I
* l o

OR
-ZERO

The +O option fo rces the computer to stay in the backup idle loop, a
tight loop which looks for a new job from the EXECUTIVE.

8

+4 octal:
+5 octal:
+6 octal:
+7 octal:
+10 octal:

t.11 octal:
-zero:

+zero:

checks erasable memory.
checks fixed memory.
an extensive multiply ari thmetic check.
an extensive divide ari thmetic check.
checks everything in the previous seven options (internal
self-check of the computer).
turns on the electroluminescent displays in the DSKY.
this option is the same a s the 210 options until an e r r o r
is detected.
does not purposely check any par t of the computer.

Procedure to S ta r t SELF-CHECK

SELF-CHECK has its own verb-noun combination that should be utilized when
start ing any of the options from the DSKY (verb 2 1 and noun 27) .

V21N27E (20 or +NON-ZER0)E

This procedure puts the desired number in the SMODE reg i s te r depending
upon the option desired. The pressing of the second enter (E) button completes the
procedure.

Report E-1905 by Alan I. Green is recommended for those not acquainted with
the operation of the keyboard and display of the Apollo computer. A description of
what the three symbols used stand for is given below:

V = Verb
N = Noun
E = Enter

Malfunction Indication

The block diagram in Figure 2 on page 1Ois used a s a reference for this dis-
cussion. If SELF-CHECK should locate a malfunction the following sequence of ev-
ents w i l l occur:

Step 1: The contents of the Q regis ter is put in the SFAIL regis ter .

Step 2: The ERCOUNT regis ter is incremented by one.
Step 3: The program a la rm light on the DSKY is turned on.
Step 4: Octal 01102 is put in the FAILREG regis ter ,
Step 5: (a) stop SELF-CHECK (i f c(SM0DE) is +NON-ZERO).

This is the address +1 of where the e r r o r occurred.

(b) s t a r t at beginning again (i f c(SM0DE) is -NON-ZERO).
(c) continue on with SELF-CHECK a t the next address

af ter the e r r o r (i f c(SM0DE) is -ZERO).

9

0 Start -NON-ZERO ,-"-(c~

r

TC SFAIL
(continue with
SELF-CHECK

(increment SCOUNT)
Erasable registers
(increment SCOUNT +1)

Fixed memory

-

increment SCOUNT)
L Arithmetic Divide

(increment SCOUNT +2)
I

I
+NON-ZERO

I)
Put +O in
SMODE and
idle

l"----

register

c(Q) put in
SFAIL register

ERRORS
"

FIG. 2 COUNT REGISTERS AND MALFUNCTION INDICATORS

The above block diagram indicates the flow of SELF-CHECK when rt l0 or -zero
is put in the SMODE register.

* SCOUNT +2 is incremented after completion of the fixed memory check when
arithmetic multiply and arithmetic divide a r e removed from SELF-CHECK.

1 0

Steps 3 and 4 w i l l be omitted i f the contents of the FAILREG reg i s te r is not
+zero. A computer "FRESH START" w i l l se t the SMODE, SFAIL, FAILREG, and
ERCOUNT reg i s te r s to +zero. A computer "RESTART" w i l l s e t the SFAIL reg i s te r
to +zero.

If a second malfunction is located,41102 is put in the FAILREG reg i s te r but
steps 3 and 4 a r e omitted, Steps 3 and 4 are omitted f rom a l l successive malfunctions
until the FAILREG regis ter is made +zero (normally by performing a "FRESH START").

It is possible to leave SELF-CHECK on for a long period and keep t rack of
the number of malfunctions that have occurred by observing the ERCOUNT reg is te r ,
The SFAIL reg i s te r w i l l contain the e r r o r address +l of the las t malfunction.

The "program alarm' ' light on the DSKY is used by other programs beside
SELF-CHECK. Therefore, the FAILREG reg i s te r (1363) should be observed to verify
what type of malfunction occurred should this light come on. An octal number 01102
in this regis ter indicates a SELF-CHECK e r r o r . Registers SFAIL (1364) and ERCOUNT
(1365) should be observed,, and probably recorded, i f there has been a SELF-CHECK
e r r o r because these reg i s te r s contain the address +1 of where the las t e r r o r occur-
red and the total number of e r r o r s .

Changes (if any) in SELF-CHECK Options When a Malufnction is Detected

Putting a +11 in the SMODE reg i s te r illuminates all possible electroluminescent
displays on the DSKY. The subroutine puts a +zero in the SMODE regis ter . This
routine does not automatically check for a malfunction of the computer. It depends
on an observer to watch the DSKY for the proper displays.

No useful function w i l l be performed by putting a number l a r g e r than octal 11

in the SMODE regis ter because no SELF-CHECK subroutines have been written for
these numbers. If octal 12 o r a l a r g e r number is put in the SMODE regis ter a sub-
routine w i l l change the contents of the SMODE to +zero, which fo rces the computer to
go to the backup idle loop,

Figure 3a shows what happens to the option of SELF-CHECK YOU are
in if an e r r o r is detected while +1 to A-10 is in the SMODE regis ter . F i r s t , the mal-
function indications previously discribed a r e gone through if the number in the
SMODE regis ter is ei ther +NON-ZERO. However, the next s tep depends on the sign
of the number in the SMODE regis ter . If the number is plus, the contents of the
SMODE regis ter is changed to +zero which forces the computer into a backup idle
loop. If the number in the SMODE is negative, the subroutine that is associated
with that number is s tar ted at the beginning again and the contents of the SMODE
regis ter is not changed.

1 1

START

?' I

-(1 to 10)
+(1 to 10)

C(SMODE) = (f l TO * lo)

any loop formed by rtl to
and including f 10 i n SMODE
reg i s t e r

- put +O in malfunction
SMODE indicators
and idle += ERRORS t

F I G 3a

START 1
I +2

2' increment SCOUNT

v
put +O in malfunction
SMODE indicators
and idle 4 4 ERRORS

u FIG. 3b

SELF -

+10

r
put +O in
SMODE
and idle

- 2

-0

T

CHECK L1
I I malfunc Aion

I

re tu rn to next line and continue
FIG, 3c

Fig. 3 ERROR OPTIONS OF SELF-CHECK

12

Figure 3b shows what happens when 22 is in the SMODE regis ter and an
e r r o r is detected. The SCOUNT regis ter is incremented at the beginning of each of
the subroutines that make up the internal computer selfcheck, even if they are run
through consecutively as they a r e when 210 of - zero is in the SMODE regis ter .

F igure 3c shows what happens to the options of SELF-CHECK controlled by
+lo o r - zero being in the SMODE regis ter , The reader should also look a t Figure 2
to observe how the 51 to 27 options are run through consecutively when 210 or - zero
is in the SMODE regis ter . If an e r ror is detected while +10 is in the SMODE reg-
i s t e r , it is replaced by a +zero. If a -10 is in the SMODE regis ter , the internal
computer self-check is s tar ted at the beginning again. If a - zero is in the SMODE
regis ter , the computer goes back to continue checking the internal computer self-
check a t the nextline f rom where the e r r o r was detected. Of course the mal-
function indicators are updated every time an e r r o r is detected,

How to Use the DSKY to Monitor SELF-CHECK

The block diagram in Figure 2 shows how the three SCOUNT regis ters may
be utilized to monitor the operation of SELF-CHECK. Register SCOUNT (1366) is
incremented at the start of each of the seven minor loops that make up the internal
computer self-check. Register SCOUNT +1(1367) is incremented upon the comple-
tion of the erasable memory part of the internal computer self-check when +4, 01:

- 0 is in the SMODE regis ter . Register SCOUNT +2(1370) is incremented upon the
completion of the ari thmetic divide part of the internal computer self-check when
+7, +lo, or - 0 is in the SMODE register . The incrementing of the SCOUNT +2 reg-
ister when ?lo or - 0 is in the SMODE regis ter indicates the successful completion
of the internal self-check of the computer. If a V15NOlE 13663 is performed on the
DSKY, the contents of these three count regis ters w i l l appear in R1, R2, and R3 of

the DSKY.
It may be desirable, for information or diagnostic reasons, to s e t the three

SCOUNT regis ters and the ERCOUNT regis ter to zero before initiating one of the
options of SELF-CHECK. If so, these four r eg i s t e r s have to be s e t to zero f rom
the DSKY. The following procedure w i l l accomplish this:

Step 1: V2lNOlE 1765E O O O O O E (ERCOUNT regis ter)
Step 2:' N15E OOOOOE (SCOUNT regis ter)
Step 3: E O O O O O E (SCOUNT +1 regis ter)
Step 4: E OOOOOE (SCOUNT + 2 regis ter)

13

CHAPTER 2

SHOW-BANKSUM OPERATING PROCEDURES

The SHOW-BANKSUM routine shows the sum of the bank in R1 of the DSKY,
the bank number in R2 of the DSKY (should be same number as in R1, but can be
positive or negative), and the "bugger" word in R3 of the DSKY. The operating
procedure consists of three steps: it is important to perform the last s tep to end this
part icular job.

Procedure to START SHOW-BANKSUM

This routine has its own Verb (56) so it is very easy to s t a r t . The informa-
tion for bank 00 appears in R1, R2, and R3 of the DSKY immediately af ter start ing
SHOW-BANKSUM. ;:<

STARTING PROCEDURE V56E

Procedure to Display Next Bank

The "proceed" verb is utilized to display the sum of the r e s t of the banks.
Each time the proceed verb is entered f rom the DSKY, the information for the next
higher bank appears in R1, R2, and R3 of the DSKY. If another "proceed verb enter"
is performed af ter the las t bank in a part icular rope has been observed, the infor-
mation for bank 00 w i l l be displayed again, Continued proceed verb enters w i l l

allow you to observe all the banks a second time.
CONTINUE PROCEDURE V33E

Procedure to Stop BANK-SHOWSUM

The oper&tor must punch in the "terminate" verb when he is through with
SHOW-BANKSUM. This terminates the SHOW-BANKSUM routine in the EXECUTIVE.

TERMINATE PROCEDURE V34E

>I< Starting SHOW-BANKSUM puts + O in the SMODE regis ter , This forces SELF-
CHECK to go into the backup idle loop.

15

.

. . I

c

CHAPTER 3

EXPLANATION O F COMPUTER INTERNAL SELFCHECK

SELF-CHECK has been written so it is a check of the computer by the com-
puter. The 19 options described in the "Operating Procedures ' ' par t of this r epor t
may be utilized for diagnostic purposes should the computer develop a malfunction.
Eighteen options a r e related to the internal operation of the computer; the other
option lights up DSKY electroluminescents. The fact that it is possible to success-
fully change the options of SELF-CHECK a s s u r e s the basic operation of the
EXECUTIVE and much of the DSKY.

There a r e seven major sections in this version of SELF-CHECK; a minor
section (IN-OUT pulses) is a lso a par t of one of the major sections (all pulses
possible). The first major section exerc ises almost a l l of the control pulses used
by the computer, The second major section checks the special and central reg-
isters. Erasable memory is checked thirdly. The fourth section checks f o r the cor-
rec t contents of the rope and checks the computer circuitry associated with fixed
rope memory. The fifth and sixth sections check the ari thmetic operations of the
multiply and divide instructions, The electroluminescent displays on the DSKY a r e
checked in the seventh section.

Three of the options available in SELF-CHECK allow the computer to con-
secutively execute the f i r s t s ix major sections of SELF-CHECK. These six sections
are considered the internal selfcheck of the computer. Following is a l i s t containing
all of the subroutines of these six sections in chronological o rde r as they would be
performed when performing the internal selfcheck.

T C+T C F
CCSCHK
BZMFCHK
RESTORE 1

RESTORE2
RESTORE3
BZFCHK
DXCH+DIM
DAS+INCR
MPCHK

checks almost a l l pulses,
35 to 4 5 milliseconds.

17

The only non-programmable instruction that is checked is PINC, which is
checked in the RUPTCHK subroutine. The fact that TIME3 interrupts 2 1 / 2 mil-
liseconds af ter TIME4 a s s u r e s the proper functioning of a l l the pulses in this in-
struction. It is not possible to check the pulses in the other non-paogramma.ble in-
structions.

N o part icular effort has been made to check the pulses associated with the
S, Z , and SQ reg i s t e r s , Some of these pulses a r e used in edery memory cycle and
the fact that SELF-CHECK is successfully completed a s s u r e s the existence of
these pulses,

A shor t description of the pulses checked by each subroutine in the pulses
section of this repor t w i l l now be given:

TC+TCF This subroutine checks all of the pulses of the TC
and T C F instructions except the ability to TC to erasable
memory. A CS fixed memory instruction is used for the
f i r s t t ime and is checked by the next subroutine.

1 -

CCSCHK The main purpose of this subroutine is to make sure
the CCS instruction performs the four required branches
correctly and that c(A) is correct af ter each branch. It
w a s necessary to perform a fifth CCS to make s u r e the CI
pulse forced the result of a 21 to be + O . A l l of the CCS pulses
a r e checked except RB-WG,

This subroutine a lso checks pulses associated with CS fixed,
erasable , and special and central memory. Also those as-
sociated with a TS to erasable memory.

RZMFCHK A l l of the pulses used by the BZMF instruction a r e checked
by the BZMFCHK subroutine. Also those pulses used by
CA fixed memory,

The fact the BZMF instruction should jump when the c(A) 5 0

and that it should not jump when c(A) = +NON-ZERO is ch-
ecked. Also that is does not jump when c(A) is overflow
with + O (01-00000).

RESTORE1 This subroutine checks the ability of the NDX, CCS, AD, MSU,

SU, CA, and MASK instructions to read the original contents
back into erasable memory. The normal operation of these
instructions a r e not of pr imary importance.

1 9

The NDX erasable , CA erasable , and MASK erasable in-
structions a r e used and checked for the first t ime.

The fact that the MASK, NIP, and DV instructions do not
edit is a l so checked.

RESTORE2 This subroutine checks the ability of the extended NDX,
DCA, and DCS instructions to read the original contents
back into erasable memory. The normal operation of
these instructions are not of pr imary importance.

The pulses used by the XCH erasable , extended NDX er-
asable , extended NDX fixed memory, DCS erasable , CA
special and central , and the DCA erasable instructions a r e
checked.

RESTORE3 The ability to r e s t o r e instructions back into erasable
memory is checked by this subroutine.

BZFCHK Al l of the pulses used by the B Z F instruction a r e checked
by the BZFCHK subroutine. The fact that the B Z F inst-
ruction should jump when the c (A) = + O and should not jump
when c (A) # 20 is checked. It is also made s u r e that the
B Z F instruction w i l l not jump with overflow (01-0000) and
underflow (10-377777) in the A regis ter .

DXCH+DIM DXCH+DIM checks all of the pulses used by the DXCH and
the DIM instructions. It a lso checks the pulses used by
the TS with overflow, TS specia l and central , CA special
and central , and AD erasable instructions.

DAS+INCR This subroutine checks a l l of the pulses in the DAS and INCR
instructions. It a lso checks the pulses used by the DCA
fixed memory, DCS fixed memory, LXCH special and central ,
and XCH special and centra l memory instructions.

The pulses in the AD instruction a r e a lso checked thoroughly
fo r the f i r s t t ime. The AD instruction has been used before
but this is the first t ime the resul t of the addition has been
checked.

20

MPCHK The MPCHK subroutine checks all of the pulses used by
the NIP, AUG, and ADS instructions. The AUG and ADS
instructions are utilized in the process of checking the
four sign combinations possible in multiply.

DVCHK A l l of the pulses of the DV and QXCH instructions a r e
checked by this subroutine a s well as the pulses used by
the TS with underflow instruction. Six divides a r e used to
thoroughly check out all the sign combinations and other
features of this instruction.

MSUCHK This subroutine checks all of the pulses of the MSU inst-
ruction except the RB-WG pulses, which are checked by
the IUSTORE1 subroutine.

MASKCHK MASKCHK checks the pulses in the MASK that have not
previously been checked.

NDX+SU This subroutine finishes checking the pulses in both the
index instructions. It also checks all of the pulses in the
SU instruction except RB-WG, which are checked in the
RESTORE 1 subroutine.

D - -SC The D--SC subroutine checks that DCS, DXCH, and DCA
can be performed on special and central registers. A
DXCH and DCS is performed on the L reg is te r because the
o rde r sequence of pulses can be checked more thoroughly
by using this regis ter .

D - -LCHK This subroutine was written to check that the o ~ e r f l o w bit
disappeared when a word went into and out of the L reg is te r
and to make s u r e that the Q reg is te r was capable of holding
1 6 bits.

ADDRCHK ADDRCHK makes s u r e the overflow, underflow, end-around -
c a r r y features , and other features of the adder a r e
functioning correctly. It a l so makes s u r e that the ADS
special and central instruction is working satisfactorily when
the resul t of the addition is o ~ e r f l o w .

21

RUPTCHK

IN-OUT 1

IN-OUT2

IN -OUT 3

The main purpose of this subroutine is to make s u r e that
an overflow-underflow condition in the A reg i s t e r will

hold off an interrupt. It a lso checks that INHINT w i l l
a lso hold off an interrupt and that a waiting interrupt w i l l
interrupt immediately af ter the RESUME instruction. The
basic operation of TIME3, TIME4, and the WAITLIST a r e
a lso checked since they are all used by this subroutine.

Checks all pulses of the WRITE and READ instructions.

Checks all pulses of the ROR and WOR instructions.

Checks all pulses of the RAND, WAND, and M O R ins t-
ructions.

Check of Special and Centra l Regis ters

This section of SELF-CHECK makes s u r e the A, B, C, G , and Q reg i s t e r s
and the output of the adder have a l l 16 decimal bit combinations pass through them
a t l eas t once. All 15 decimal bit combinations a r e put into and called out of the I,
reg i s t e r and erasable memory; thus the parity bit is generated and checked for each
15 bit combination. It is not possible to guarantee the pari ty r eg i s t e r is working
correct ly i f words come out of erasable memory correctly. However this par t
of SELF-CHECK w i l l indicate a n e r r o r i f any bits a r e dropped or picked up.
There fo re , i f the pari ty r eg i s t e r does not catch bits being dropped o r picked up,
this pa r t of SELF-CHECK w i l l indicate a malfunction.

Following is a shor t description of the subroutines in this part of SELF-
CHECK:

COUNTCHK Effectively counts down a 15 decimal bit number by one
until zero is reached and checks that each successive
number is actually one l e s s than the number preceding it.
Actually bit 15 is a sign bit so the countdown alternates be-
tween plus and minus numbers. In the process of counting
down the 15 decimal bit number all the bit combinations a r e
generated by the adder and a r e written in and out of the A ,
B, C, L, Q , and G reg i s t e r s as well as erasable memory.
Also the parity bit is generated and checked internally by
the computer fo r all 15 bit combinations.

2 2

O-UFLOW- Checks that all overflow and underflow bit combinations
a r e generated by the adder and a r e written into and out of
A, B, C, and Q reg i s t e r s . The procedure used is to count
down, by one, f rom maximum positive o\'erflow and neg-
ative underflow conditions until the overflow-underflow con-
dition does not exist. Again there is a check that each suc-
cessive number is one l e s s than the preceding number.

Check of Erasable Memory

This par t of SELF-CHECK makes s u r e that is is possible to read a "1" and
a "0" into and out of each bit position of erasable memory with the following excep-

tions. Registers 1377, 1376, and 1375 a r e not specifically checked in this par t of
SELF-CHECK because they have previously been thoroughly checked while checking
the special and central r eg i s t e r s , These three regis ters a r e required for storage
while checking the r e s t of erasable memory. The special erasable r eg i s t e r s f rom
6 1 down through 10 a r e only addressed to s e e i f a parity e r r o r occurs. Finally
the cycle and shift r eg i s t e r s are checked by putting a combination of al ternate zeros
and ones in these regis ters and making s u r e the cor rec t operation is performed.

Following is a shor t description of the subroutines in this par t of SELF-
CHECK:

M.

ERASCHK The non-special erasable r eg i s t e r s a r e checked for correct
addressing and content by placing thei r own address in two
successive regis ters and making su re there is a difference
of -1 when the contents of the lower address regis ter is added
to the complement of the higher address regis ter ; i f i t is not,
this subroutine performs a TC to the ERRORS subroutine.
The contents of the two regis ters a r e complemented and the
complement of the lower regis ter added to the contents of the
higher regis ter ; the resul t is checked for -1. The previous
contents of the erasable regis ters a r e preserved and r e -
placed af ter the regis ters have been checked. The higher
address regis ter of the previous iteration becomes the lower
address regis ter of the present iteration. The erasable
memory banks a r e checked from zero through seven with
common erasable (60-1374) being checked after each erasable

bank.

2 3

CNTRCHK

CYCLSHFT

The CS instruction is performedon all erasable r eg i s t e r s
f r o m octal 60 through octal 10. These include all counters
and other special erasable regis ters . It is not feasible to
put thei r own address in these reg i s t e r s and check thei r
contents because of thei r specia l use.

The octal number 25252 is placed in the two cycle r eg i s t e r s ,
the shift r ight r eg i s t e r , and the EDOP reg i s t e r . The con-
tents of these reg i s t e r s a r e then twice checked fo r co r-
rec t contents.

Check of Rope Memory

The routine fo r checking the cor rec t contents of a rope is called ROPECHK.
Its purpose is twofold. F i r s t i t is a check on the computer. It makes s u r e all

cu r ren t d r ive r s , sense amplif iers, and associated c i rcui t ry used in connection with
the fixed memory a r e operating properly. Secondly i t is a check on the rope itself.
It makes s u r e none of the sense o r inhibit l ines have become shorted o r opened
(essential ly guarantees contents of rope is cor rec t and can be read correct ly by
the computer).

The sum of each bank should be the same as i t s bank number in the l o w

o r d e r bits of the computer. A special word, which is called a "bugger" word, is
added to the normal sum of the bank a s the l a s t word to be added. This bugger word
fo rces the sum of the bank to be plus or minus the Bank Number. A s an example,

1 the s u m of bank 33 octal may be 00033 or 77744.
Two TC SELF words indicate the end of the summing process fo r each bank.

The "bugger" word immediately follows the second TC SELF word. Of course all

addresses in a bank up to and including the bugger word have to contain words of

good pari ty.
Following is a shor t description of the ROPECHK subroutine:

ROPECHK Each bank i n the rope is summed separately; f rom the
lowest address to the highest address used in that bank.
The contents of a higher address is added to the sum of

the previous addresses . If this c rea tes an overflow con-
dition a +1 is added to the new sum; a -1 is added to the new
s u m i f a n underflow condition is created. The sum of each
bank should be plus o r minus its own bank number. If the
s u m of the bank is i t s bank number the subroutine proceeds
on to checking the next bank. If the sum of the bank is not

24

its bank number SELF-CHECK goes to the e r r o r routine.
The banks irre checked in ascending o rder .

Check of Multiply Arithmetic Function

There a r e four multiply loops in the multiply subroutine. The. two main
purposes of this subroutine a r e to form all the different combinations of adds
possible in the multiply instruction (1 to 14) and to change the value of the word to be
added from minimum to maximum for each combination of add. The total time of
the multiply routine takes approximately 20 seconds.

It is felt that the multiply and di I ide subroutines a r e a good ari thmetic check
of the computer. Therefore the long activity time of these subroutines may be ut-
ilized to check normal operation of the computer in conjunction with asynchronous
and synchronous interface signals. The cor rec t resul t of each multiply and each
divide is verified before proceeding on. The procedure gone through i f an e r r o r
is found is described in the “operating procedures’’ section af this report .

A description of the multiply subroutine is below:

MPNMBRS The f i r s t multiply loop multiplies 37777 by (37777 through
00001). The contents of the A regis ter counts down while
the contents of the L regis ter counts up. There is a check
af ter each multiplication that these two reg i s t e r s add up to
37777. The second multiply loop multiplies 77776 by (3 7 7 7 7

through 00001). There is a check in this loop that the c (A)
is minus zero and the c (L) counts down by minus one af ter
each multiplication. The third loop interchanges the mul-
t ipl ier and the multiplicand of the f i rs t loop. The contents of

the A and L regis ters should be the same as in the f i r s t loop.
The fourth loop interchanges the multiplier and multiplicand
of the second loop. The contents of the A and L regis ters should
be the same a s the second loop.

Check of Divide Arithmetic Function -
The four divide subroutines form different combinations of subtractions

while varying the value of the word to be subtracted. It takes approximately 0. 01
second to go through a l l the four divide subroutines. However SELF-CHECK keeps

the computer in the divide subroutines for approximately 20 seconds.
Following is a descriptlon of the divide subroutines:

25

DVICHK Divides +/17777/+/37777/ by +/20000/. The contents of
the A reg i s t e r a n i L reg i s t e r have opposite signs before
the division. The quotient is +/37774/; the sign depends
on the sign of c (A) and the sign of the divisor. The re-
mainder is 21 depending upon the sign of the contents of the
A reg i s t e r before the division.

DV2CHK Divides +17777+3777'7 by +20000. The quotient is +37777
with +17777 the remainder .

DV4CHK Divides +37776+0 by +37776. The quotient is +37777 with a
remainder of +37776.

DV5CHK Divides f O t O by 20. The contents of the A reg i s t e r and L
reg i s t e r have opposite signs before each division. The
quotient w i l l be f /37777 / ; the sign depends on the sign of
c (L) and the sign of the divisor. The remainder is f O ;

the sign depends on the sign of the L regis ter before the
division. This is not a useful dicision but it does help to
make s u r e the computer is operating correct ly .

2 6

CHAPTER 4

EXPLANATION OF DSKYCHK

c

The purpose of DSKYCHK is to light up all the DSKY electroluminescent

elements. It puts a + O in the SMODE reg i s t e r a t the beginning of the routine, which
forces the computer internal selfcheck to sleep. This is the only routine in SELF-
CHECK that does not have to be terminated. It runs to completion once and then
the computer falls into the backup idle loop. The routine has to be entered as one
of the SELF-CHECK options every t ime i t is to be exercised.

Each electroluminescent display l a s t s for 5.12 seconds to allow t ime to ob-
se rve all the elements in the display. The sequence of the displays is described
next:

DSKYCHK F i r s t the digit "9" is displayed in the R1, R2, R3, Verb,
Noun, and PROG positions of the DSKY. The digits 8

through 0 a r e then each displayed in a l l the possible dis-
plays on the DSKY. The next display leaves a l l zeros in
the DSKY and turns on the "computer activity" light and
the "verb" flash and the "noun" flash. The las t display has

only the "computer activity'' light on, Finally the DSKY is
left completely blank.

27

I

c

CHAPTER 5

EXPLANATION O F SHOW-BANKSUM

SHOW-BANKSUM consists of a routine called SHOWSUM. This routine
essentially does the same thing that the routine ROPECHK does; that i s , add up
the sum of separa te banks in the rope. After this the similari ty ends. ROPECHK
makes sure the sum of the bank is plus o r minus i t s own bank number while
SHOWSUM displays the sum of the bank in R1 of the DSKY irrespective of what
the sum may be. SHOWSUM also displays the bank number and the bugger word in
R2 and R3 of the DSKY at the same time. The sum of the bank and bank number
in R1 and R2 a r e shown as the l eas t significant bit instead of bits 11 - 15 (the actual
bank bits in the computer). Again i t is worthwhile mentioning that the sum of a
bank may be plus o r minus i t s bank number. This i s , bank 5 may be 00005 or
77772.

Undoubtedly the greatest use of this routine w i l l be in restoring the confid-
ence of personnel in the computer and inverifying that the correct rope modules f o r
a part icular mission a r e actually the ones in the computer package. Following is a
shor t description of the SHOWSUM subroutine:

SHOWSUM Each bank in the rope is summed separately; f rom the lowest
address to the highest address used in that bank. The contents
of a higher address a r e added to the sum of the previous ad-
d resses . If this c rea tes an overflow condition a +1 is added
to the new sum; a -1 is added to the new sum i f a n underflow
condition is created. The sum of each bank should be plus o r
minus i t s own bank number. The sum of the bank is dis-
pla,yed in R1 of the DSKY. The bank number (actual bank
number used to sum the ba.nk shifted 5 places left) is dis-
played in R2 and the bugger word is displayed in R3. Entering
a proceed verb (33) f rom the DSKY w i l l display the same in-
formation for the next higher bank, Entering a terminate
verb (3 4) f rom the DSKY w i l l end the SHOWSUM routine.

29

.

APPENDIX

The flow char t s in th is appendix use both AGC instructions and word descrip-
tions to explain the subroutines. The purpose was to use word descriptions most of
the t ime and utilize instructions only where they were necessary to make the overall
picture clear .

Some explanation of symbols:

b(X) means before contents of X regis te r

c(X) means contents of X regis te r

SKEEPl through SKEEP7 are erasable reg is te rs ,

31

TC + T C F

1
CCSCHK I TC

I

c
to CCSCHK

32

CCSCHK

- 3 in A register
I

b(A) = f O

b(A) = +NON-ZERO

b(A) = -NON-ZERO
c(A) = +2

b(A) = +NON-ZERO
c(A) = +1

_ _ ~
b(SKEEPI) = -NON-Z

b(SKEEP1) = +NON-ZERO
c(A) = +O

b(A) = +O
c(A) = +O + b (A) = + o

h(A) = +NON-ZERO

ture of CS instruction
erasable memory fea-

to BZMFCHK

,

BZMFCHK

BZMF on +NON-ZERO num-
b e r and see i f routine continues
o r jumps

jumps

continues

r
BZMF on -NON-ZERO num-
b e r and see i f routine continues
o r jumps

continues

jumps
v

BZMFon overflow with
+0(01-00000) and see i f rou-
tine continues o r jumps

jumps

continues

BZMF on +O and s e e if rou-
t ime continues o r jumps continues

jumps
1

BZMF on -0 and see if rou-
t ine continues o r jumps continues

I jumps

go to RESTORE1

34

RESTORE1

; put 00177 in SR regis ter

CCS, CS, AD, MSU, SU,
CA, MASK shift right r e-
g i s t e r and check c(A) fo r
+1

I YES +
MP, DV, shift right re-
gister and check c(SR) still
+1

N O

IYES
go to RESTORE2

35

RESTORE2

put +1 in SKEEPl
put -1 in SKEEPZ

DCS SKEEPl and 2

check c (L) f o r "1

N O

I

rES
go t o RESTORE3

36

ERRORS
L

RESTORE3

put CS A in SKEEPl
and TC Q in SKEEPB
of erasable memory
"

y 2

put +1 in A regis ter
and go to SKEEPl

-2
check c(A) for +l af ter
coming back f rom erasable
memory

NO

1

I Y E S
SKEEP1

coming back from erasable
memory

L

ERRORS

I

-

l Y E S
go to BZFCHK

BZFCHK

I B Z F on tNON-ZERO and 1
1 ERRORS 1
I

see i f routine continues o r
jumps

jumps

--res I

B Z F on-NON-ZERO and
s e e i f routine continues o r jumps

continues

I B Z F on overflow w i t h I
+0(01-00000) and see i f
routine continues o r jumps

1

continues

-0(10-37777) and see i f
routine continues o r jumps

jumps

1 continues

B Z F on +O and see if
routine continues o r continues
jumps

jumps

v
B Z F on -0 and see if
routine continues o r .

jumps
”” - ” continues ”

jumps

1

go to DXCH+DIM

I

DXCH+DIM

in A reg i s te r

I ERRORS 1

TS SKEEP2 no jump

jump

T
put -1 in SKEEP2
put 40000 in L reg i s te r
put 37777 in A reg i s te r

DXCH SKEEPl and check
c(A) for +1 and c(L) fo r -1 NO , ,

YES

DIM SKEEPl and SKEEP2 I
" ,

check c(SKEEP1) f o r 37776
and c(SKEEP2) for 40001 NO

I

DIM "A" twice and check NO
for -0

l Y E S *
DIM +O and check if resul t
is +O N O

b 1"-

1

go to DAS+INCR

39

D- -LCHK

.I form underflow in Q reg i s t e r

Q
A I no jump

Ino jump

I check c (A) is -1 N O

rEs
ADDRCHK

put 20000 in A and Q reg i s t e r s

ADS Q and check
c(A) is +1 ___-___ NO

lYES
go to RUPTCHK

40

DAS+INCR

put - 1 in L register
and +2 in A register

*

-~
DAS A and check c(A)
for +4 and c(L) for -2 NO

put 40000 in SKEEP4
put - 2 in L register
put +3 in A register

L"--I N O

DAS SKEEP3
check c(A) for +O
check c(L) for +1
check c(SKEEP3) fo r +1
check c(SKEEP4) fo r -1

and check for -0
NO

INCR +O and check
fo r +1

put 40000 in SKEEPl
put 37777 in SKEEP2
put +3 in L register

check c(A) fo r - 1
check c(SKEEP1) for +1
check c(SKEEP2) for - 2

. NO

go to MPCHK

41

MPCHK

put +1 in A reg i s t e r
and AUG A reg i s t e r

AD L and multiply
37777 by -2

*
ADS L and check

NO

YES

!

1
." "

put -1 in SKEEPG,

check c-(A) for +i I and c (L) for 37776

c(A) and c(SKEEP6) fo r - 1 NO

I----

IES
go to DVCHK

4.2

DVCHK

.

"" no &!E!.E

r divide - (O) + (20000) by (00
and check that c(L) = t O NO

""

divide + (O) - (20000) by - (O O O O l)
check c(A) for 20000
and c(L) for - 0

divide +(17777) + (37777) by -(20000;(
_ I _ " ~ - I _

and c(L) for -(17777)
""

divide -(17777) +(37777) by +(ZOOOO)
check c(A) for -(37774)
and c(L) for -1

--/YES
divide +(37776) + (0) by -(37776)

QXCH SKEEPl and
check c(Q) for +1
and c(SKEEP1) for +3

N O

rES
go to MSUCHK

43

MSUCHK

- ERRORS
MSU (77777) (77777)
and check c(A) is "0

A N O

YES

and check c(A) = +O NO

and check c(A) for -1 NO

YES

*
go to MASKCHK

44

MASKCHK

MASK (00007) (77770) and
check c (A) is +O NO

MASK (00001) (00007) and
check c (A) is +1 NO

.-1
k E S

put +1 in A, L, and SKEEPl
registers

SKEEPl and
check c (A) +1 NO

check c(A) - 1 t NO

YES

to D--SC

45

D- -SC

put +2 in L regis te r and

I DCS A and check
c(A) is -1

NO
DXCH L and check
c(A) +3, c(L) +0,
and c(Q) = +l

I YES

put -1 in Q reg i s t e r and
+1 in A r eg i s t e r (c (L) = +O)

DCA L and check
c(A) = c(L) = c(&) = b(Q) = -1 NO

-___
YES

go to D--LCHK

46

D--LCHK

form underflow in Q "I registe r

CS Q
TS A no jump

NO " .. .

l---"

ADDRCHK

N O

jump

check c(A) is C l

I

47

RUPTCHK

I

h a s incremented

initialize TIME3 to overflow
a s soon as possible

loop in overflow-underflow
loop for 2 - 1 / 2 MS

INHINT and

]-u!d allow an interrupt1

check if an interrupt 1 did occur NO

YES

[c h e c k if c(ZR!PT, is c0rrect-L- NO

YEsl
go to SMODECHK

48

IN-OUT1

put - 1 in Q regis ter using

NO

N O
and check fo r - 1
""

YES

NO

go to IN-OUT2

IN-OUT2

and 37776 in A reg i s te r

ROR L
and check c(A) for -1 NO

4'; put 37'776 in A reg i s te r

WOR L
and check c(A) and c(L) for -1 NO

50

IN -OUT 3

put 40001 in L reg i s t e r
put 17777 in A reg i s t e r

RAND L
and check c(A) is +1 I" NO

I Y E S
r" put 1 7 7 7 7 in A reg i s t e r

WAND L
check c(A) and c(L) is t l NO

put -5 in L reg i s t e r
put +6 in A regis ter

RXOR L
check c(A) is - 3
check c(L) is -5 NO

YES

t
go to COUNTCHK

51

COUNTCHK

-+-NON-ZERO

1c
AD c(L) and
check for -1 -

YES

check for new job

1
put complement of c(SKEEP6)
in Q reg i s te r

3
put c(A) in SKEEP6

1
I

AD SKEEP7 to c(A)
and check for - 1 -

YES 1
I INCR SKEEP7

+
1

I ERRORS I
I d

NO

0

I I
add c (SKEEP7) and'c(SKEEP6)
and check for -0

YES I
NO

go to 0-UFLOW

52

. 0 - U F L O W

AD 37777 to c(A) register
A D 00001 to c(A) register
and put in Q register

-NON-ZERO
-

T

I

+ -
add c(SKEEP4) and c(SKEEP5)
and check result is -1

NO

I

add c(SKEEP5), 40000, and 77776
and put in Q register

I I

add c(SKEEP3) and c(SKEEP5)

RELINT and check for new job
I

C A SKEEP4
DIM SKEEP5 I

NO

I

i

".
I

i
YES

check c (SKEEP NO "

"J
"F"
go to SMODECHK

I t

put + 1 in SKEEP4 I ER-lSCHK
-. I

-alizk-tc;ch:ck EBANK ze ro I
I

t 1 make su re c(EREST0RE) # +O 1
1 put own address in X and X+1 J r eg i s t e r s

+

r7j ERRORS

t
check that the re-
c(X) and the complement of
c(X+1) is -1

I

NO

~

check t h X G i Z h G G r
the c(X+I) and the complement
of ctX) is -1
- NO

I
YES

1 r e s to re original c(X) and c(X+1) 7
c

[put +O i n ERESTORE reg i s t e r [
c

~.

put dEBANK) h SKEEPZ and
check fo r new job

+
put c(SKEEP2) in EBANK reg i s t e r
and increment SKEEP7

check if througt
unswitched erasable

1

/was an e ra sab le banks o r
unswitched e ra sab le c h e r b d

Bank checked l a s t

Initialize unswitched

put +O in SKEEP4
erasable memory.

unswitched

checked l a s t
e rasable

CEP4 T

check if EBANK two is

YES
I

has been checked

YES 1 NO

go to CNTRCHK t

init ial ize to checks
EBANK 1,3,4, 5,6, 7

CNTRCHK

put 00050 in SKEEP2
and A regis te r

1

1
CS erasable
60 through 11 octal

addresses

-

I +O
i

go to CYCLSHFT

55

CYCLSHFT

I 1

put 2 5 2 5 2 in CYR, CYL,

add c(CYR), c(CYL),
c(SR), c(EDOP), and a
constant and check that
resul t is - 1

NO

add c(CYR), c(CYL),
c(SR), c(EDOP), and
+l and check that resul t
is -1

- N O

YES

increment SCOUNT +l

go to SMODECHK

56

ROPECIIK OR SHOWSUM

put -0 in SKEEPfi

I L put t 0 in SMODE.
inftialize SELFRET to addres s
of.K&!:G!!!L 7""-

___- ""

1
is sum of bank the s a m e display (I)SU=f bank, (2) actual
as bank number bank, number, and (3) bugger word in R1, R2, and R 3 of the

NO YES

has lost bank been checked

I I
t

I what kind of bank is to be I 1 checked next 7 I
common fixed lflxed fixed

i
is bank 02 next banks
to be checked

is bank 04 next bank to be
checked

NO YES
se t flag t o check fixed
fixed banks 02 and 0 3

initialize to check

I fixed banks
r e s t of common banks 0 3

5 7

MPNMBRS

(2 0 second multiplier check)

put 37777 in A reg i s t e r

I I
AD c(L) and 40000 A
to c (A) r eg i s t e r and
check result is -0

NO

YES

I
check for new job

1
/-down c (S K E F

1
"

last multiplier

rEs
to second multiply loop

I

58

MPNMBRS (Cont’d)

put - 1 in A reg i s t e r . multiply by c(SKEEP2)

check that c(A) is -0 NO

a d d c(SKEEP2) to c(L) and I check that result is - 0 NO

YES

G=l check for new job

1 count down c(SKEEP2) by one

--I w a s 0 0 0 0 ~ 1 check that last multiplier

I‘””
go to third multiply loop

59

a

MPNMBRS (Cont’d)

I

1 I put 37777 in SKEEPl “----I

add c(L) and 40000 to
c(A) reg i s t e r and check
resul t is -0

NO

I
check for new job

1
I

count down c(SKEEP1) by one

NO check that last multiplicand
w a s 00001

YES

7
go to fourth multiply loop

I

c

MPNMBRS (Cont’d)

put 37777 in SKEEPl

r”--l ERRORS

check c(A) is -0 NO

F - K E E P - c
and check resul t is “NO

check for new job I -

I count d o l ! - c K E v]

r i -

L-NO
check that last multiplicand
was 00001

YES

go to SMODECHK

61

DVCHECK

increment SKEEP4 regis te r
put 20000 in SKEEPl
put -(20000) in SKEEP2
put -(37777) in L regis te r
put 17777 in A r eg i s t e r r"--l ERRORS

L
divide + 1 7 7 7 7 - 3 7 7 7 7 by 20000
put c(A) in SKEEP7 and check
that c(L) is +l

NO

YES

divide "177'77-37777 by 20000
add (SKEEP7) to c(A) and check
resul t is -0. Check that c (L)

N O

is +1

-

YES

divide - 1 7 7 7 7 + 3 7 7 7 7 by 20000
put c(A) in SKEEP6
add c(SKEEP7) to c(A) and check
that resu l t is -0. Check that
c(L) is -1

divide - 17777+37777 by -20000
add c(SKEEP6) to c(A) and check
result is -0. Check that c(L) is
-1. Check that c(SKEEP6) is

NO

- 3 7 7 7 4 . -
YES

t
go to next divide subroutine (DV2CHK)

62

DVCHECK (Cont'd)

.

c
divide +17777+37777 by 20000

check check that that c(A) c(L) is is +37777 +17777 NO ,T I...
DV4CHK

check that c (L) is +37776 N O

""L
I

+
go to next divide subroutine (DVSCK)

I

63

DVCHECK (Cont'd)

put +O in SKEEPl
put -0 in SKEEP2

L". I
I

'7 *
divide +O+O by +O
put c (A) in SKEEP7
check c(L) is +O

NO
c

YES

divide -O+O by - 0
put c(A) in SKEEP6
add c(SKEEP7) to c(A) and

put c (L) in A r eg i s t e r
check that resul t is -0

NO

YES

divide +0- 0 by +O
add c(SKEEP7) to c(A) and
check resul t is -0. Check
that c(L) is - 0

NO

YES

I

.

I

J

NO j-1 go back to
DVCHECK+3

YES (DVLOOP)

F i e m e n t SCOUNT-~

I
start SELF- CHECK again

64

*

I ‘

ROPECHK OR SHOWSUM

put t o in SMODE.
initialize SELFRET to addres s

“--A-
L n k s 00 and

pl

set flag to check common fixed

4
alization required to check

a c o m E n fixed bank

-“--I_-., is sum of bank the same
as bank number I YES

display (1)SUM of bank, (2) actual
bank number, and (3) bugger
word in R1, R2. and R3 of the

1 ERRORS I I I
I

y 1 h a s los t bank been checked 1
I ,
YES I NO

-

” -

”

-0 + 1

7

dn to SMODCHK s ta r t SHOWSUM

I r-“!
what kind of b m k is to be
checked next ?

common fixed fixed fixed
1

I

to be checked
is bank 02 next banks

fixed banks 02 and 03
T
initialization required

is bank 04 next bank to be
checked

set flag t o check
r e s t of common banks 03
fixed banks I

L”

again
a- - -

6 5

DSKYCHK

put +O in SMODE register
I . put decimal ten in SKEEP3

to count down number in
R1, R2, and R3

+ *
initialize waitlist with r e -
quest to go to NXTNMBR
next T3RUPT

I
-NON-ZERO

I I c
I put -0 in SKEEP3 I

zero. leave computer
activity light and verb-
noun flash on.

* 1 put -1 in SKEEP3 1

+O +NON-ZERO

*
TS SKEEP3

I
L
leave DSKY displays
zero. put in minus
sign. turn on computer
activity light and verb-
noun flash.

1
go to backup
idle loop

just blanks in all
DSKY displays.
leave on computer

leave DSKY display

all DSKY displays
(one digit in all dis-
plays at one time).

5-12 seconds

E-2065

DISTRIBUTION LIST

Internal

M. Adams (MIT/GAEC)

J . Ale kshun

R. Alonso

R. Battin

H. Blair-Smith

P. Bowditch/ F. Siraco

D. Bowler

R. Byers

G. Cherry

E. Copps

R. Cr i sp

J. Dahlen

J. DeLisle

G. Edmonds

J. B. Feldman

P. Felleman

S. Felix

J. Flanders

J. Fleming

F. Gaunt (3)

A. Green

F. Grant

Eldon Hall

T. Hemker (MIT/ NAA)

D. Hoag

A. Hopkins

F. Houston

L. B, Johnson

M. Johnston

A. Kosmala

A. Laats

A. LaPointe

L. Larson

S. Laquideira

T. M. Lawton (MIT/ MSC)

D. Lickly

G. Mayo

R. McKern

James Miller

John Miller

J. Nevins

J. Nugent

F. O'Glishen

M. Petersen

R. Ragan

G. Schmidt

R. Scholten

D. Scolamiero

N. Sears

J. Shillingfo r d

E. Smally (7)

W. Stameris

M. Trageser

R. Weatherbee

R. White

R. Woodbury

W. Wrigley

Apollo Library (2)

MIT/IL Library (6)

External:

W. Rhine (NASA/MSC) (2)

NASA~RASPO (1)
AC Electronics (3)
Kollsman (2 1
Raytheon (2 1
Major H. Wheeler (AFSC/MIT) (1)

MSC : (25 -t 1R)
National Aeronautics and Space Administration
Manned Spacecraft Center
Apollo Document Distribution Office (PA2)
Houston, Texas 77058

LRC : (2 1
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia
Attn: Mr. A. T. Mattson

GAEC: (3 + 1R)
Grumman Aircraft Engineering Corporation
Data Operations and Services, Plant 25
Bethpage, Long Island, New York
Attn: Mr. E. Stern

NAA: (18 t , l R)
North American Aviation, Inc.
Space and Information Systems Division
12214 Lakewood Boulevard
Downey, California
Attn: Apollo Data Requirements

Dept. 096-340, Bldg. 3, CA 99

NAA RASPO: (1)
NASA Resident Apollo Spacecraft Program Office
North American Aviation, Inc.
Space and Information Systems Division
Downey, California 9024 1

ACSP RASPO: (1)
National Aeronautics and Space Administration
Resident Apollo Spacecraft Program Officer
Dept. 32-31
AC Electronics Division of General Motors
Milwaukee 1, Wisconsin
Attn: Mr. W. Swingle
Defense Contract Administration (1)
Service Office, R
Raytheon Company
Hartwell Road
Bedford, Massachusetts 01730
Mr. S. Schwartz (1)
DOD, DCASD, Garden City
605 Stewart Avenue
Garden City, L. I. , New York
Attn: Quality Assurance
Mr. D. F. Kohls (1)
AFPRO (CMRKKA)
AC Electronics Division of General Motors
Milwaukee 1, Wisconsin 53201

	1 SELF-CHECK OPERATING PROCEDURES
	Malfunction is Detected
	How to Use the DSKY to Monitor SELF-CHECK
	SHOW-BANKSUM OPERATING PROCEDURES
	Procedure to Start SHOW-BANKSUM
	Procedure to Display Next Bank
	Procedure to Stop SHOW-BANKSUM
	CHECK
	check ofs
	TC+TCF
	CCSCHK
	BZMFCHK
	RESTORE1
	RESTORE2
	RESTORE3
	BZFCHK
	DXCI-I+DIM
	DAS+INCR
	MPCHK
	MSUCHK
	MASKCHK
	NDX-t-SU
	D- -SC

	D--LCHK
	ADDRCHK
	RUPTCHK
	IN-OUT1
	IN-OUT2
	IN-OUT3
	Check of Special and Central Registers
	COUNTCHK
	0-UFLOW
	Check of Erasable Memory
	ERASCHK
	CNTRCHK
	CYCLSHFT
	Check of Rope Memory
	ROPECHK
	Check of Multiply Arithmetic Function
	MPNMBRS
	Check of Divide Arithmetic Function
	DVlCHK
	DVZCHK
	DV4CHK
	DV5CHK

	4 EXPLANATION OF DSKYCHK
	5 EXPLANATION OF SHOW-BANKSUM

