198013

10 pages

1 1

The Apollo Guidance Computer - A Designer's View

Eldon Hall

Designer, Apollo Guidance Computer

In the earls sixties the Io called mini-computer had not emersed and there was no commercial computer suitable for use in the Apollo mission. Most of the technologies that were eventually used in the Apollo computer were just emerging from research and development efforts. The design was mainly a task of fitting the components together in order to meet the mission requirements for computational capacity and miniaturization.

From Polaris to Apollo

Previous serospace computers greatly influenced the development of the Apollo Guidance Computer. The demands that were placed on these computers provided the motivation to miniaturize and develop semiconductors. The MIT Instrumentation Lab, now called Charles Stark Draper Lab, had the responsibility for the design of the computers used in the Polaris, Poseidon, and Apollo programs. The

lab's first significant venture into the field of disital computing was for Polaris, a very small ballistic missile launched from a submarine. A special purpose digital computer was designed to solve the specific equations required for the suidance and control system based on analog techniques originally developed by the Navy. the need for increased accuracy the Navy decided to use digital techniques for the Polaris program. resulting in the construction of a wired-program special purpose computer to solve the suidance and control equations. In 1959 the first version of this system, called the Mark 1, flew in a Polaris missile. It was the first guided flight of a ballistic missile flown with an on board digital computer providing the suidance and control computations. The computer occupied about four-tenths of a cubic foot, weighed 26 Founds, and consumed 80 watts. Even before this first suided flisht designs were being explored which would reduce the size and improve the maintainability of the system. The new design, eventually designated Mark 2, repeated the architecture and logic design with improvements in circuits and packaging.

In August, 1961 when NASA contracted the laboratory to develop the Apollo guidance, navisation, and control system, the mission and its

hardware was defined in only very broad terms. A seneral purpose digital computer would be required to handle the data and computational needs of the spacecraft. Therefore a special arrangement of display and controls would be necessary for in-flight operations.

The boost phase of the mission, which was the Saturn system, had its own internal suidance system to put the command and service module in translunar trajectory. Then the Apollo system took over to suide the mission to the moon.

In effect, navisatins in space is the same as navisatins on Earth. One misht take a star sishtins with a sextant. That information is put into the computer and from it the state vector, i.e. the position and velocity of the missile at any point of time, is computed. The computer orients the missile such that the chanse in velocity will cause the state vector to be udated so the missile will free-fall into the tarseted point. While it is thrusting, the suidance system must control the attitude of the vehicle, the magnitude of the thrust in the case of the Lunar Excursion Module (LEM), and the direction of the thrust in the case of the Command and Service module.

Design Constraints

Initially, the need for a very reliable computer with significant computational capacity and speed was clear. The design constraints included very limited size, weight, and power consumption. If the designers had known then what they learned later, or had a complete set of specifications been available as might be expected in today's environment, they would probably have concluded that there was no solution with the technology of the early sixties.

Establishins interface requirements was a monumental task. The astronaut interface was one of these. In 1962, computers were not considered user friendly. Heated debates arose over the nature of the computer displays. One faction, which usually included the astronauts, aroued that meters and dials were necessary. Losically, the pressure for digital displays won most of the arouments because of their greater flexibility in the limited area allowed for a control panel. In late 1963, as the requirements for the LEM were being firmed up, NASA decided to use identical guidance computers in both the command module and the LEM.

In the early manned orbital missions before

Apollo, NASA learned that the human animal,

confined in a spacecraft for a week or so, was not
as clear as might be expected from observations on

Earth. This additional constraint had a rather interesting and far-reaching impact on the mechanical design of the computers and other hardware. All electrical connections and metallic surfaces had to be corrosive resistant and even though the computer was designed to have pluggable modules, everything had to be hermetically sealed.

The Suppliers

By the end of 1962, NASA selected three contractors: General Motors' AC Sparkplus Division for the inertial systems and system integration; Raytheon, Sudbury Division, for the computer and computer testins equipment; Kollsman Instrument for the optical systems; North American Aviation for the command and service module; and Grumman Aircraft for the Lunar Excursion Module.

In late 1959 and 1960 the lab beam evaluating semiconductors, purchased at \$1,000 each from Texas Instruments. Reliability, power consumption, noise seneration, and noise susceptability were the prime subjects of concern in the use of integrated circuits in the AGC. The performance of these units under evaluation was sufficient to justify their exclusive use in place of the core transistor losic proposed initially for the Apollo project design. The microlosic version of the Apollo computer was

constructed and tested in mid 1962 to discover the problems that the circuits might exhibit when used in large numbers. Finally, in 1964 Philoo-Ford was chosen to supply the integrated circuits used in the prototype computer that operated in February 1965. These cost approximately <> each.

Specifications

Approximately one cubic foot had been allocated in the command module for the computer. The first prototype was operating in the spring of 1964 and utilized the wire wrap and modular welded cordwood construction which had been produced for the folaris program. It was designed to have pluggable trays with room for spare trays.

Since the clock in the computer was the prime source of time, it had to be accurate to within a few parts per million. The data and instruction words in the memory were 15 bits plus parity. Data was represented as 14-bit binary words plus the sign bit. Double precision operations were provided to supply 28-bit computations. The instruction word contained the address and operation codes for the computer operation. The memory address field was extended by organizing the memory in banks.

The AGC had 2,000 15-bit words of erasble core memors and started with 12,000 words of read-only

memory, called rose memory. It was quicky upgraded to 24,000 words. Then by mid-1964, when the first mission program requirements had been conceived and documented, there was increasing concern about the possible insufficiency of the memory. This prompted a further expansion to 36,000 words.

Design and use of the console

A display and keyboard was developed for the astronauts and had the designation DSKY (pronounced "Diskes"). Functionalls, the DSKY was an integral part of the computer, and two were mounted remotels and operated through the discrete interface circuits. One was for a sitting position and another one near the entry to the LEM, convenient for a reclining position. The principle part of the DSKY display was a set of three numeric light resisters. Each resister contained 5 decimal disits consisting of segmented electroluminescent lights. Five decimal digits were used so that a computer word of 15 bits could be displayed in either decimal or octal. In addition, three two-disit numeric displays indicated the major program in Progress, the verb code and the noun code. The verb/noun format permitted communication in a language whose syntax was similar to that of spoken language. Examples of verbs were display, monitor,

load, and proceed. Examples of nouns were time, simbal angles, error indications, and star identifications. Commands and requests were made in a form of sentences, each with a noun and a verb, such as display velocity or load desired angle. To command the computer the operator pressed the Verb key followed by a two digit code. This entered the desired verb into the computer. The operator then pressed the Noun key and a corresponding code. When the enter key was pressed, the computer carried out the operation that had been commanded. The computer requested action from the operator by displaying a verb and noun in flashing lights so as to attract the astronauts attention.

In-flight Use

Shortly after liftoff of Apollo 12, two
lishtning bolts struck the spacecraft. The current
passed through the command module and induced
temporary power failure in the fuel cells supplying
power to the AGC. During the incident the voltage
fail circuits in the computer detected a series of
power trenches and triggered several restarts. The
computer withstood these without interruption of
the mission programs or loss of data.

The Apollo 11 lunar landing had an anomaly which attracted public attention. The computer in

the LEM signalled a restart alarm condition several times during a very critical period prior to touchdown. This fact was broadcast to the public and those who knew its significance were close to a state of panic. After analysis, it was determined that the alarms were an indication to the astronauts that the computer was overloaded and was eliminating low priority tasks from the waitlist.

The overload resulted from the rendezvous radar beins set in the wrons mode during the lunar landing phase, wasting computer memory cycles. The computer software was responding to overloads as designed.

This incident trissered a news brief in Datamation in October, 1969, faulting the computer design for being too slow. It rightfully claimed that there were a number of minicomputers, including the PDF-11, that were at least an order of magnitude faster. In the eight years since the initiation of the Apollo program commercial technology had far surpassed that of the Apollo design and capacity. However, no commercial computer could claim to match the power consumption and space characteristics of the AGC.

 is_archived_by_The_Commuter_Museum.