BLOCK 11 AGC SELF-CHECK AND SHOW- BANK%UM

by
Edwin D. Smally

December 1966

CAMBRIDGE 39, MASSACHUSETTS

GUIDANCE, NAVIGATION
AND CONTROL |

Approved: &&AA C M Date: EDLJ_Z‘]

ELDON C, HALL, DIRECTOR, DIGITAL DEVL,
APO GUIDANCE AND NAVIGATION PROGRA

Date:é &zé; é7 :
DAVID G. H DIREC

APOLLO GUI (ANCE AN AVIGATION PROGRAM

/Z— ..+ Date: 7;%47

RALPH B/ RAGAN, DEP DIRECTOR
INSTRUMENTATION LABORATORY

Approved:

Approved:

_MASSACHUSETTS INSTITUTE OF TECHNOLOGY

.,: 44 A

L

BLOCK 11 AGC SELF-CHECK AND SHOW-B;NSU

by
Edwin D, Smally .

December 1966

INSTRUMENTATION
LABORATORY

CAMBRIDGE 39, MASSACHUSETTS

corv# b0

ACKNOWLEDGEMENT

This report was prepared under DSR Project 55-23850,
~sponsored by the Manned Spacecraft Center of the National

Aeronautics and Space Administration through Contract NAS 9-
4065.

The publication of the report does not constitute approval by
the National Aeronautics and Space Administration of the findings
or the conclusions contained therein. It is published only for the
exchange and stimulation of ideas.

ADDENDUM 1

E-2065
BLOCK |1 AGC SELF-CHECK AND SHOW-BANKSUM
by

E.D. Smally
December 1966

The SELF-CHECK routine as found in Sunburst 206 is essentially as described
in E-2065 with the exceptions noted below.

A. Initialization of SELF-CHECK Resgerved Erasable

Fresh Start does not clear SFAIL or ERCOUNT. ERESTORE is cleared by
Fresh Start. Restart does not clear SFAIL,

It may be desirable to clear ERCOUNT, by keyboard, after doing Verb Fresh
Start.

B. Alarm Display

ASELF-CHECK initiated program alarm turns on the pfogram alarm light and
displays the FAILREG set (Noun 50). The FAILREG set, (FAILREG, FAILREG +1,
FAILREG +2), displays the alarm codes of the first, next to last, and last program
failure. The alarm code for SELF-CHECK is still 01102, If édditional information
is desired, the operator may display Noun 31, the ALMCADR set, (ALMCADR,
ALMCADR +1, ERCOUNT), The contents of ALMCADR, if SELF-CHECK was the
last failure, is equal to 1 + address of the failure (the contents of SFAIL), ALMCADR +1
the contents of BBANK for SELF-CHECK (76002), and ERCOUNT the number of SELF-
CHECK failures since ERCOUNT was last clear_g‘;d. ~ If the contents of ALMCADR +1
is not 76002, due to an intervening failure by a program other than SELF-CHECK, the
contents of SFAIL (machine address 01357) could then be displayed directly.

C. ERASCHK

This part of SELF-CHECK makes sure that it is possible to read a "1" and a

"0" into and out of each bit position of erasable memory.

ADDENDUM 1 (E-2065) ‘ Page 2 .

In the event that a RESTART occurs in the midst of ERASCHK, the RESTART
subroutine does a FRESH START if a set of erasable registers were being checked.
The reason for the FRESH START is that ERASCHK has just contaminated two erasable
registers, and the EBANK information needed to identify and restore them has been
destroyed by the lead in to the RESTART program (this problem has been corrected in
the 258 mission program). The RESTART program tésts register ERESTORE and if
ZERO, proceeds with RESTART, otherwise it goes to DOFSTART (program FRESH
START).

The non-special erasable registers are checked for correct addressing and con-
tent by placing their own address in two successive registers and making sure there
is a difference of -1 when the contents of the lower address register is added to the
complement of the higher address register; if it is not, this subroutine performs a
TC to the PRERRORS subroutine. The previous contents of the erasable registers
had been preserved and are restored to the two registers by PRERRORS which then

performs a TC to the Errors subroutine.

If the difference is -1, the contents of the two registers are complemented and
the complement of the lower register added to the contents of the higher register;
the result is checked for -1. If the result is not -1, TC to PRERRORS as noted above.
If the result is -1, restore the previous contents to the two registers, and proceed to
the next iteration. The higher address register of the past iteration becomes the lower
address register of the next iteration.. The erasable memory banks are checked from
zero through seven with common erasable (60-1374) being checked after each erasable
bank.

D. Future Reassemblies

Future reassemblies of Sunburst will not be protected by cuss if a bank is loaded
to the point of not leaving room for the two TC selfs normally preceeding the Bugger
word. The 206 version of SELF-CHECK requires the two TC selfs in order for
ROPECHK or SHOWSUM to work with the resulting program. (The 258 version of
SELF-CHECK does not require the two TC selfs for ROPECHK or SHOWSUM to work.)

E-2065

BLOCK II AGC SELF-CHECK AND SHOW-BANKSUM

ABSTRACT

This report is in two main sections. The first section contains the operating
procedures to be utili=~d by persons using the SELF-CHECK or SHOW-BANKSUM
routines. It also has block diagram flow charts which should help explain how the
operating procedures of SELF-CHECK may be used for diagnostic purposes. The
procedures for SELF-CHECK are slightly different in BLOCK I and BLOCK II while
the procedures for SHOW-BANKSUM are the same.

The second section of this report goes into an explanation of SELF-CHECK
and SHOW-BANKSUM. The explanation of SELF-CHECK consists of an explanation
of the computer internal selfcheck and an explanation of the check of the DSKY
electroluminescents. There is a separate description of each subroutine in SELF-
CHECK and SHOW-BANKSUM. There is also a separate flow chart, located in the
appendix, for each subroutine. This section should prove helpful to field engineers
in locating the cause of malfunctions in the computer.

All numbers in this report are octal unless specifically mentioned otherwise,

The two subroutines that check the multiply and divide arithmetic functions
of the computer will be removed from flight ropes. Figure 1 shows that placing a
6 or £7 in the SMODE register will allow the computer to loop in either the
arithmetic multiply or arithmetic divide subroutines if these subroutines are part
of SELF-CHECK. Placing a +6 or 7 in the SMODE register will exercise the internal
computer self-check when these two subroutines are removed from SELF-CHECK.
Thus, +6, +7, or £10 all perform the same funct1on when the arithmetic multiply and
arithmetic divide are removed from SELF-CHECK,

by Edwin D. Smally
December 1966

PART L.

CHAPTER

1

PART 11,
3

TABLE OF CONTENTS

OPERATING PROCEDURES FOR SELF-CHECK AND
SHOW-BANKSUM

SELF-CHECK OPERATING PROCEDURES

Options Available in SELF-CHECK
Procedure to Start SELF-CHECK
Malfunction Indication

Changes (if any) in SELF-CHECK Options When a
Malfunction is Detected

How to Use the DSKY to Monitor SELF-CHECK

SHOW-BANKSUM OPERATING PROCEDURES

Procedure to Start SHOW-BANKSUM
Procedure to Display Next Bank
Procedure to Stop SHOW-BANKSUM

EXPLANATION OF SELF-CHECK AND SHOW-BANKSUM
EXPLANATION OF COMPUTER INTERNAL SELF-

CHECK

Check of Pulses

TC+TCF
CCSCHK
BZMFCHK
RESTORE]1
RESTORE2
RESTORE3
BZFCHK

© © =3

13

15

15
15
15

17
18
19
19
19
19
20
20
20

Page

DXCH+DIM 20
DAS+INCR ‘ : 20
MPCHK 21
DVCHK ' 21
MSUCHK 21
MASKCHK 21
NDX+SU ' 21
D--SC 21
D--LCHK 21
ADDRCHK 21
RUPTCHK ‘ 22
IN-OUT1 22
IN-OUT2 22
IN-OUT3 - 22
Check of Special and Central Registers 22
COUNTCHK 22
O-UFLOW 23
Check of Erasable Memory .' - 23
ERASCHK v 23
CNTRCHK 24
CYCLSHFT : 24
Check of Rope Memory 24
ROPECHK 24
Check of Multiply Arithmetic Function 25
MPNMBRS 25
Check of Divide Arithmetic Function - 25
DV1CHK 26
DV2CHK 26
DV4CHK 26
DV5CHK 28
4 EXPLANATION OF DSKYCHK 27

5 EXPLANATION OF SHOW-BANKSUM 29

APPENDIX 31

PART 1

OPERATING PROCEDURES FOR SELF-CHECK AND SHOW-BANKSUM

CHAPTER 1

SELF-CHECK OPERATING PROCEDURES

There are 19 possible options in this BLOCK II version of SELF-CHECK.
These options are explained farther on in this report. The first 18 options are used
to check the internal operation of the computer (+0 to +10) while the 19th option (+11)
checks the electroluminescent displays on the DSKY. It is felt that most people
will use the options associated with +10 or -zero since all three of these options per-
form a complete internal self-check of the computer, however, these three options
perform different diégnos’cic functions when an error is detected. The options as-
sociated with +1 to +7 check out various parts of the computer and will be useful for
field enginevers or other personnel interested in diagnostic testing of the computer.

The normal use of SELF-CHECK is as a backup routine to check the computer
continuously when the computer is not busy with other routines. The +10 or -zero

options can be used for this purpose.

Options Available in SELF-CHECK

The different options of BLLOCK II SELF-CHECK are controlled by putting
different numbers in the SMODE register (normally during the SELF-CHECK start
procedure); this is the same as BLOCK I. However, it should be noted that the op-
tions are not the same in the BLOCK I and BLOCK II computers.

Placing a +0 in the SMODE register forces the computer to go into the backup
idle loop where it continuously looks for a new job,

Placing a +NON-ZERO number below octal 12 or -0 number in the SMODE
register starts one of the active options of SELF-CHECK. Below is a description of
what part (s) of the computer the options check. A block diagram in Figure 1 on the
next page shows the options available and indicates the number to put in the SMODE

register for the desired option,

+1 octal: checks all pulses possible by internal control of the

computer.
+2 octal: checks all the IN-OUT instruction pulses.
+3 octal: checks SC registers and all bit combinations.

]
ill ALL PULSES POSSIBLE TO BE
CHECKED (INCLUDES IN-OUT PULSES)
| I
| 3
+2 IN-OUT PULSES
L |
{ K J
+3 SPECIAL AND CENTRAL REGISTERS
| |
[3
+4 ERASABLE REGISTERS : \10
|] oR
i LI \ -ZERO
+5 FIXED MEMORY
l |
[)
+6 ARITHMETIC MULTIPLY
I |
| [] y
:l:l7 ARITHMETIC DIVIDE
[
:!:1$ 1
| DSKYCHK |

put +0 in SMODE
(go to backup idle loop)

Fig. 1 OPTIONS OF SELF-CHECK

The numbers associated with the options represent the contents of the
SMODE register.

The +0 option forces the computer to stay in the backup idle loop, a
tight loop which looks for a new job from the EXECUTIVE. ,

+4 octal: checks erasable memory.

+5 octal: checks fixed memory.

+6 octal: an extensive multiply arithmetic check, -

+7 ocfal: an extensive divide arithmetic check.

+10 octal: " checks everything in the previous seven options (internal
self-check of the computer). *

+11 octal: turns on the electroluminescent displays in the DSKY.

-zero: this option is the same as the +10 options until an error

is detected.
+zero: - does not purposely check any part of the computer,

Procedure to Start SELF_—CHECK

SELF-CHECK has its own verb-noun combination that should be utilized when
starting any of the options from the DSKY (verb 21 and noun 27).

V21N27E (+0 or +NON-ZERO)E

This procedure puts the desired number in the SMODE register depending
upon the option desired. The pressing of the second enter (E) button completes the
procedure.

Report E-1905 by Alan 1. Green is recommended for those not acquainted with
the operation of the keyboard and display of the Apollo computer. A description of
what the three symbols used stand for is given below:

V = Verb
N = Noun
E = Enter

Malfunction Indication

The block diagram in Figure 2 on page 10is used as a reference for this dis-
cussion. If SELF-CHECK should locate a malfunction the following sequence of ev-

ents will occur:

Step 1: The contents of the Q register is put in the SFAIL register,
This is the address +1 of where the error occurred.

Step 2: The ERCOUNT register is incremented by one,

Step 3: The program alarm light on the DSKY is turned on.

Step 4: Octal 01102 is put in the FAILREG register,

Step 5: (a) stop SELF-CHECK (if ¢(SMODE) is +NON-ZERO).

(b) start at beginning again (if c(SMODE) is -NON-ZERO).

(c) continue on with SELF-CHECK at the next address
after the error (if ¢(SMODE) is -ZERO).

-NON-ZERO

-

(increment SCOUNT)

All pulses possible .

(increment SCOUNT)

SC registers

(increment SCOUNT)

Erasable registers
(increment SCOUNT +1)

(increment SCOUNT)

Fixed memory

(increment SCOUNT)

Arithmetic multiply

(increment SCOUNT)
Arithmetic Divide

TC SFAIL
(continue with
SELF-CHECK

+NON-ZERO

Put +0 in
SMODE and

idle

Octal 01102
put in FAILREG

Program alarm
light turned on

Increment
ERCOUNT
register

c(Q) put in
SFAIL register

I———-{ ERRORS

(increment SCOUNT +2)

L]

FIG.2 COUNT REGISTERS AND MALFUNCTION INDICATORS

The above block diagram indicates the flow of SELF-CHECK when +10 or -zero,

is put in the SMODE register.

* SCOUNT +2 is incremented after completion of the fixed memory check when
arithmetic multiply and arithmetic divide are removed from SELF-CHECK.

10

Steps 3 and 4 will be omitted if the contents of the FAILREG register is not
+zero. A computer "FRESH START'" will set the SMODE, SFAIL, FAILREG, and
ERCOUNT registers to +zero, A computer "RESTART" will set the SFAIL register
to t+zero.

If a second malfunction is located,41102 is put in the FAILREG register but
steps 3 and 4 are omitted. Steps 3 and 4 are omitted from all successive malfunctions
until the FAILREG register is made +zero (normally by performing a "FRESH START").

It is possible to leave SELF-CHECK on for a long period and keep track of
the number of malfunctions that have occurred by observing the ERCOUNT register,
The SFAIL register will contain the error address +1 of the last malfunction.

The "program alarm'" light on the DSKY is used by other programs beside
SELF-CHECK. Therefore, the FAILREG register (1363) should be observed to verify
what type of malfunction occurred should this light come on., An octal number 01102
in this register indicates a SELF-CHECK error. Registers SFAIL (1364) and ERCOUNT
(1365) should be observed,, and probably recorded, if there has been a SELF-CHECK
error because these registers contain the address +1 of where the last error occur-

red and the total number of errors.

Changes (if any) in SELF-CHECK Options When a Malufnction is Detected

Putting a +11 in the SMODE register illuminates all possible electroluminescent
displays on the DSKY. The subroutine puts a +zero in the SMODE register. This
routine does not automatically check for a malfunction of the computer, It depends
on an observer to watch the DSKY for the proper displays.

No useful function will be performed by putting a number larger than octal 11
in the SMODE register because no SELF-CHECK subroutines have been written for
these numbers. If octal 12 or a larger number is put in the SMODE register a sub-
routine will change the contents of the SMODE to +zero, which forces the computer to ‘
go to the backup idle loop.

Figure 3a shows what happens to the option of SELF-CHECK you are
in if an error is detected while +1 to 10 is in the SMODE register. First, the mal-
function indications previously discribed are gone through if the number in the
SMODE register is either -fNON—Z‘ERO. However, the next step depends on the sign
of the number in the SMODE register. If the number is plus,the contents of the
SMODE register is changed to +zero which forces the computer into a backup idle
loop. If the number in the SMODE is negative, the subroutine that is associated
with that number is started at the beginning again and the contents of the SMODE

register is not changed.

11

~(1 to 10)
+(1 to 10)

C(SMODE) = (+1 TO +10) C(SMODE)

any loop formed by 1 to put +0 in malfunction
and including +10 in SMODE SMODE indicators
register and idle 1
ERRORS
FIG, 3a
-2
+2
C(SMODE) = +2
uncrement SCOUNT 1 put +0 in malfunction
l SMODE indicators
and idie ?
| IN-OUT PULSES] —] ERRORS
FIG. 3b
+10
C(SMODE) = +10 or -0
put +0 in
SMODE
’ and idle
intermal computer p
: malfunction
SELF -CHECK , indicators
»| ERRORS
return to next line and continue
FIG. 3c

Fig., 3 ERROR OPTIONS OF SELF-CHECK

12

Figure 3b shows what happens when +2 is in the SMODE register and an
error is detected. The SCOUNT register is incremented at the beginning of each of
the subroutines that make up the internal computer selfcheck, even if they are run
through consecutively as they are when +10 of -zero is in the SMODE register,

Figure 3c shows what happens to the options of SELF-CHECK controlled by
110 or -zero being in the SMODE register. The reader should also look at Figure 2
to observe how the +1 to +7 options are run through consecutively when +10 or -zero
is in the SMODE register, If an error is detected while +10 is in the SMODE reg-
ister, it is replaced by a +zero. If a -10 is in the SMODE register, the internal
computer self-check is started at the beginning again. If a -zero is in the SMODE
register, the computer goes back to continue checking the internal computer self-
check at the nextline from where the error was detected. Of course the mal~-

function indicators are updated every time an error is detected.

How to Use the DSKY to Monitor SELF-CHECK

The block diagram in Figure 2 shows how the three SCOUNT registers may
be utilized to monitor the operation of SELF-CHECK. Register SCOUNT (1366) is
incremented at the start of each of the seven minor loops that make up the internal:
computer self-check. Register SCOUNT +1(1367) is incremented upon the comple-
tion of the erasable memory part of the internal computer self-check when +4, +10 or
-0 is in the SMODE register. Register SCOUNT +2(1370) is incremented upon the
completion of the arithmetic divide part of the internal computer self-check when
+7, +10, or -0 is in the SMODE register. The incrementing of the SCOUNT +2 reg-
ister when +10 or -0 is in the SMODE register indicates the successful completion
of the internal self-check of the computer. If a V15NOLE 1366E is performed on the
DSKY, the contents of these three count registers will appear in R1, R2, and R3 of
the DSKY.

It may be desirable, for information or diagnostic reasons, to set the three
SCOUNT registers and the ERCOUNT register to zero before initiating one of the
options of SELF-CHECK. If so, these four registers have to be set to zero from
the DSKY. The following procedure will accomplish this:

Step 1: V2INOLE 1765E 00000E (ERCOUNT register)
Step 2¢ N15E 00000E (SCOUNT register)
Step 3: E 00000E (SCOUNT +1 register)
Step 4: E 00000E (SCOUNT +2 register)

13

CHAPTER 2

SHOW-BANKSUM OPERATING PROCEDURES

The SHOW-BANKSUM routine shows the sﬁm of the bank in R1 of the DSKY,
the bank number in R2 of the DSKY (should be same number as in R1, but can be
positive or negative), and the ''bugger' word in R3 of the DSKY. The operating
procedure consists of three steps: it is important to perform the last step to end this
particular job,

Procedure to START SHOW-BANKSUM

This routine has its own Verb (56) so it is very easy to start. The informa-
tion for bank 00 appears in R1, R2, and R3 of the DSKY immediately after starting
SHOW-BANKSUM. *

STARTING PROCEDURE V56E

Procedure to Display Next Bank

The "proceed" verb is utilized to display the sum of the rest of the banks.
Each time the proceed verb is entered from the DSKY, the information for the next
higher bank appears in R1, R2, and R3 of the DSKY. If another ''proceed verb enter"
is performed after the last bank in a particular rope has been observed, the infor-
mation for bank 00 will be displayed again. Continued proceed verb enters will
allow you to observe all the banks a second time.

CONTINUE PROCEDURE V33E

Procedure to Stop BANK-SHOWSUM

The operator must punch in the "terminate" verb when he is through with
SHOW-BANKSUM. This terminates the SHOW-BANKSUM routine in the EXECUTIVE,
TERMINATE PROCEDURE V34E

* Starting SHOW~-BANKSUM puts +0 in the SMODE register. This forces SELF-
CHECK to go into the backup idle loop.

PART II

EXPLANATION OF SELF-CHECK AND SHOW-BANKSUM

CHAPTER 3

EXPLANATION OF COMPUTER INTERNAL SELFCHECK

SELF-CHECK has been written so it is a check of the computer by the com-
puter. The 19 options described in the "Operating Procedures' part of this report
may be utilized for diagnostic purposes should the computer develop a malfunction.
Eighteen options are related to the internal operation of the computer; the other
option lights up DSKY electroluminescents. Thé fact that it is possible to success-
fully change the options of SELF-CHECK assures the basic operation of the
EXECUTIVE and much of the DSKY.

There are seven major sections in this version of SELF-CHECK; a minor
section (IN-OUT pulses) is also a part of one of the major sections (all pulses
possible), The first major section exercises almost all of fhe control pulses used
by the computer. The second major section checks the special and central reg-
isters. Erasable memory is checked thirdly. The fourth section checks for the cor-
rect contents of the rope and checks the computer circuitry associated with fixed
rope memory. The fifth and sixth sections check the arithmetic operations of the
multiply and divide instructions. The electroluminescent displays on the DSKY are
checked in the seventh section.

Three of the options available in SELF~-CHECK allow the computer to con-
secutively execute the first six major sections of SELF-CHECK. These six sections
are considered the internal selfcheck of the computer. Following is a list containing
all of the subroutines of these six sections in chronological order as they would be

performed when performing the internal selfcheck.

TC+TCF

CCSCHK

BZMFCHK

RESTORE1

RESTORE2

RESTORES3 checks almost all pulses,
BZEFCHK 35 to 45 milliseconds.
DXCH+DIM

DAS+INCR

MPCHK

17

The only non-programmable instruction that is checked is PINC, which is
checked in the RUPTCHK subroutine. The fact that TIME3 interrupts 2 1/2 mil-
liseconds after TIME4 assures the proper functioning of all the pulses in this in-
struction. It is not possible to check the pulses in the other non-programmable in-
structions.

No particular effort has been made to check the pulses associated with the
S, Z, and SQ registers. Some of these pulses are used in every memory cycle and
the fact that SELF-CHECK is successfully completed assures the existence of
these pulses.

A short description of the pulses checked by each subroutine in the pulses

section of this report will now be given:

TC+TCF " This subroutine checks all of the pulses of the TC
and TCF instructions except the ability to TC to erasable
memory. A CS fixed memory instruction is used for the

first time and is checked by the next subroutine.

CCSCHK The main purpose of this subroutine is to make sure
the CCS instruction performs the four required branches
correctly and that ¢(A) is correct after each branch. It
was necessary to perform a fifth CCS to make sure the CI
pulse forced the result of a +1 to be +0. All of the CCS pulses
are checked except RB-WG.

This subroutine also checks pulses associated with CS fixed,
erasable, and special and central memory. Also those as-
sociated with a TS to erasable memory.

BZMFCHK All of the pulses used by the BZMF instruction are checked
by the BZMFCHK subroutine. Also those pulses used by

CA fixed memory.

The fact the BZMF instruction should jump when the c(A) £ 0

and that it should not jump when c(A) = +NON-ZERO is ch-
ecked. Also that is does not jump when c(A) is overflow
with +0 (01-00000).

RESTORE1 This subroutine checks the ability of the NDX, CCS, AD, MSU,
SU, CA, and MASK instructions to read the original contents
back into erasable memory. The normal operation of these

instructions are not of primary importance.

19

RESTORE2

RESTORE3

BZFCHK

DXCH+DIM

DAS+INCR

The NDX erasable, CA erasable, and MASK erasable in-

structions are used and checked for the first time.

The fact that the MASK, MP, and DV instructions do not
edit is also checked.

This subroutine checks the ability of the extended NDX,
DCA, and DCS instructions to read the original contents
back into erasable memory. The normal operation of

these instructions are not of primary importance.

The pulses used by the XCH erasable, extended NDX er-
asable, extended NDX fixed memory, DCS erasable, CA
special and central, and the DCA erasable instructions are
checked.

The ability to restore instructions back into erasable

memory is checked by this subroutine.

All of the pulses used by the BZF instruction are checked
by the BZFCHK subroutine, The fact that the BZF inst-
ruction should jump when the ¢ (A) = +0 and should not jump
when ¢ (A) # +0is checked. It is also made sure that the
BZF instruction will not jump with overflow (01-0000) and
underflow (10-377777) in the A register.

DXCH+DIM checks all of the pulses used by the DXCH and
the DIM instructions. It also checks the pulses used by
the TS with overflow, TS special and central, CA special

and central, and AD erasable instructions.

This subroutine checks all of the pulses in the DAS.and INCR
instructions. It also checks the pulses used by the DCA
fixed memory, DCS fixed memory, LLXCH special and central,

and XCH special and central memory instructions.

The pulses in the AD instruction are also checked thoroughly
for the first time. The AD instruction has been used before
but this is the first time the result of the addition has been
checked.

20

MPCHK

DVCHK

MSUCHK

MASKCHK

NDX+SU

D--LCHK

ADDRCHK

The MPCHK subroutine checks all of the pulses used by
the MP, AUG, and ADS instructions. The AUG and ADS
instructions are utilized in the process of checking the

four sign combinations possible in multiply.

All of the pulses of the DV and QXCH instructions are.
checked by this subroutine as well as the pulses used by
the TS with underflow instruction. Six divides are used to
thoroughly check out all the sign combinations and other

features of this instruction.

This subroutine checks all of the pulses of the MSU inst-
ruction except the RB-WG pulses, which are checked by
the RESTORE! subroutine,

MASKCHK checks the pulses in the MASK that have not
previously been checked,

This subroutine finishes checking the pulses in both the
index instructions. It also checks all of the pulses in the.
SU instruction except RB-WG, which are checked in the
RESTORE1 subroutine.

The D--SC subroutine checks that DCS, DXCH, and DCA
can be performed on special and central registers. A
DXCH and DCS is performed on the L register because the
order sequence of pulses can be checked more thoroughly

by using this register.

This subroutine was written to check that the overflow bit
disappeared when a word went into and out of the L, register
and to make sure that the Q register was capable of holding
16 bits,

ADDRCHK makes sure the overflow, underflow, end-around -
carry features, and other features of the adder are
functioning correctly. It also makes sure that the ADS
special and central instruction is working sat’isfactorﬂ‘y when

the result of the addition is overflow.

21

RUPTCHK The main purpose of this subroutine is to make sure that
an overflow-underflow condition in the A register will
hold off an interrupt. It also checks that INHINT will
also hold off an interrupt and that a waiting interrupt will
interrupt immediately after the RESUME instruction. The
basic operation of TIME3, TIME4, and the WAITLIST are

also checked since they are all used by this subroutine.

IN-OUT1 Checks all pulses of the WRITE and READ instructions.

IN-OUT2 Checks all pulses of the ROR and WOR instructions.

IN-OUTS3 Checks all pulses of the RAND, WAND, and RXOR inst-
ructions.

Check of Special and Central Registers

This section of SELF-CHECK makes sure the A, B, C, G, and Q registers
and the output of the adder have all 16 decimal bit combinations pass through them
at least once. All 15 decimal bit combinations are put into and called out of the L
register and erasable memory; thus the parity bit is generated and checked for each
15 bit combination. It is not possible to guarantee the parity register is working
correctly if words come out of erasable memory correctly. However this part
of SELF-CHECK will indicate an error if any bits are dropped or picked up.
Therefore, if the parity register does not catch bits being dropped or picked up,
this part of SELF-CHECK will indicate a malfunction,

Following is a short description of the subroutines in this part of SELF-
CHECK:

COUNTCHK Effectively counts down a 15 decimal bit number by one
until zero is reached and checks that each successive
number is actually one less than the number preceding it.
Actually bit 15 is a sign bit so the countdown alternates be-
tween plus and minus numbers. In the process of counting
down the 15 decimal bit number all the bit combinations are
generated by the adder and are written in and out of the A,
B, C, L, Q, and G registers as well as erasable memory.
Also the parity bit is generated and checked internally by
the computer for all 15 bit combinations.

22

O-UFLOW Checks that all overflow and underflow bit combinations
are generated by‘the adder and are written into and out of
A, B, C, and Q registers. The procedure used is to count
down, by one, from maximum positive overflow and neg-
ative underflow conditions until the overflow-underflow con-
dition does not exist. Again there is a check that each suc-

cessive number is one less than the preceding number.

Check of Erasable Memory

- This part of SELF-CHECK makes sure that'is is possible to read a "'1" and
2 "'0" into and out of each bit position of erasable memory with the following excep-
tions. Registers 1377, 1376, and 1375 are not specifically checked in this part of
SELF-CHECK because they have previously been thoroughly checked while checking
the special and central registers. These three registers are required for storage
while checking the rest of erasable memory. The special erasable registers from
61 down through 10 are only addressed to see if a parity error occurs. Finally
the cycle and shift registers are checked by putting a combination of alternate zeros
and ones in these registers and making éure the correct operation is performed.

Following is a shoft description of the subroutines in this part of SELF-

CHECK:

ERASCHK The non-special erasable registers are checked for correct
addressing and content by placing their own address in two
successive registers and making sure there is a difference
of -1 when the contents of the lower address register is added
to the complement of the higher address register;if it is not,
this subroutine performs a TC to the ERRORS subroutine,
The contents of the two registers are complemented and the
complement of the lower register added to the contents of the
higher register; the result is checked for -1. The previous
contents of the erasable registers are preserved and re-
placed after the registers have been checked. The higher
address register of the previous iteration becomes the lower
address register of the present iteration. The erasable
memory banks are checked from zero through seven with
common erasable (60-1374) being checked after each erasable
bank.

23

CNTRCHK

CYCLSHFT

The CS instruction is performedon all erasable registers
from octal 60 through octal 10. These include all counters
and other special erasable registers. It is not feasible to
put their own address in these registers and check their
contents because of their special use.

The octal number 25252 is placed in the two cycle registers,
the shift right register, and the EDOP register. The con-
tents of these registers are then twice checked for cor-

rect contents.

Check of Ro‘pe Memory

The routine for checking the correct contents of a rope is called ROPECHK.

Its purpose is twofold.

First it is a check on the computer. It makes sure all

current drivers, sense amplifiers, and associated circuitry used in connection with

the fixed memory are

operating properly. Secondly it is a check on the rope itself.

It makes sure none of the sense or inhibit lines have becbme shorted or opened.
(essentially guarantees contents of rope is correct and can be read correctly by
the computer).

The sum of each bank should be the same as its bank number in the low

- order bits of the computer. A special word, which is called a "bugger" word, is

- added to the normal sum of the bank as the last word to be added. This bugger word

. forces the sum of the bank to be plus or minus the Bank Number. As an example,
| the sum of bank 33 octal may be 00033 or 77744.

Two TC SELF

words indicate the end of the summing process for each bank.

The "bugger' word immediately follows the second TC SELF word. Of course all

addresses in a bank up to and including the bugger word have to contain words of

good parity.

Following is a

ROPECHK

short description of the ROPECHK subroutine:

Each bank in the rope is summed separately; from the

lowest address to the highest address used in that bank.

The contents of a higher address is added to the sum of

the previous addresses. If this creates an overflow con-

dition a +l1 is added to the new sum; a -1 is added to the new

sum if an underflow condition is created. The sum of each

bank should be plus or minus its own bank number. If the

sum of the bank is its bank number the subroutine proceeds -

on to checking the next bank. If the sum of the bank is not

24

its bank number SELF-CHECK goes to the error routine.

The banks are checked in ascending order.

Check of Multiply Arithmetic Function

There are four multiply loops in the multiply subroutine. The two main
purposes of this subroutine are to form all the different combinations of adds
possible in the multiply instruction (1 to 14) and to change the value of the word to be
added from minimum to maximum for each combination of add. The total time of
the multiply routine takes approximately 20 seconds.

It is felt that the multiply and di.ide subroutines are a good arithmetic check
of the computer. Therefore the long activity time of these subroutines may be ut-
ilized to check normal operation of the computer in conjunction with asynchronous
and synchronous interface signals. The correct result of each multiply and each
divide is verified before proceeding on. The procedure gone through if an error
is found is described in the "'operating procedures' section of this report.

A description of the multiply subroutine is below:

MPNMBRS The first multiply loop multiplies 37777 by (37777 through
00001). The contents of the A register counts down while
the contents of the L. register counts up. There is a check
after each multiplication that these two registers add up to
37777, The second multiply loop multiplies 77776 by (37777
through 0000l). There is a check in this loop that the c (A)
is minus zero and the ¢ (L) counts down by minus one after
each multiplication. The third loop interchanges the mul-
tiplier and the multiplicand of the first loop. The contents of
the A and L registers should be the same as in the first loop.
The fourth loop interchanges the multiplier and multiplicand
of the second loop. The contents of the A and L registers should

be the same as the second loop.

Check of Divide Arithmetic Function

The four divide subroutines form different combinations of subtractions
while varying the value of the word to be subtracted. It takes approximately 0.0l
second to go through all the four divide subroutines. However SELF-CHECK keeps
the computer in the divide subroutines for approximately 20 seconds.

Following is a description of the divide subroutines:

25

DVICHK

DV2CHK

DV4CHK

DV5CHK

Divides +/17777/+/377717/ by +/20000/. The contents of
the A register and L register have opposite signs before
the division. The quotient is +/37774/; the sign depends
on the sign of ¢ (A) and the sign of the divisor. The re-
mainder is +1 depending upon the sign of the contents of the
A register before the division.

Divides +17777+37777 by +20000., The quotient is +37777
with +17777 the remainder,

Divides +37776+0 by +37776. The quotient is +37777 with a
remainder of +37776. '

Divides +0+0 by £0. The contents of the A register and L
register have opposite signs before each division. The
quotient will be +/37777/; the sign depends on the sign of
¢ (L) and the sign of the divisor. The remainder is +0;
the sign depends on the sign of the L register before the
division. This is not a useful division but it does help to

make sure the computer is operating correctly.

26

CHAPTER 4

EXPLANATION OF DSKYCHK

The purpose of DSKYCHK is to light up all the DSKY electroluminescent
elements. It puts a +0 in the SMODE register at the beginning of the routine, which -
forces the computer internal selfcheck to sleep. This is the only routine in SELF -
CHECK that does not have to be terminated., It runs to completion once and then
the computer falls into the backup idle lpop. The routine has to be entered as one
of the SELF-CHECK options every time it is to be exercised. "

Each electroluminescent display lasts for 5.12 seconds to allow time to ob-

serve all the elements in the display. The sequence of the displays is described
next:

DSKYCHK First the digit ''9" is displayed in the R1l, R2, R3, Verb,
Noun, and PROG positions of the DSKY. The digits 8
through 0 are then each displayed in all the possible dis-
plays on the DSKY. The next display leaves all zeros in
the DSKY and turns on the "computer activity'' light and
the "verb' flash and the ''noun' flash., The last display has

1

only the "computer activity' light on. Finally the DSKY is

left completely blank.

27

CHAPTER 5

EXPLANATION OF SHOW-BANKSUM

SHOW-BANKSUM consists of a routine called SHOWSUM. This routine
essentially does the same thing that the routine ROPECHK does; that is, add up
the sum of separate banks in the rope. After this the similarity ends. ROPECHK
makes sure the sum of the bank is plus or minué its own bank number while
SHOWSUM displays the sum of the bank in R1 of the DSKY irrespective of what
the sum may be. SHOWSUM also displays the bank number and the bugger word in
R2 and R3 of the DSKY at the same time. The sum of the bank and bank number
in Rl and R2 are shown as the least significant bit instead of bits 11 ~ 15 (the actual
bank bits in the computer). Again it is worthwhile mentioning that the sum of a
bank may be plus or minus its bank number. This is, bank 5 may be 00005 or.
17772, ‘

Undoubtedly the greatest use of this routine will be in restoring the confid-
ence of personnel in the computer and in verifying that the correct rope modules for
a particular mission are actually the onesinthe computer package. Following is a
short description of the SHOWSUM subroutine: .

SHOWSUM Each bank in the rope is summed separately; from the lowest
address to the highest address used in that bank. The contents
of a higher address are added to the sum of the previous ad-
dresses. If this creates an overflow condition a +1 is added
to the new sum; a -1 is added to the new sum if an underflow
condition is created. The sum of each bank should be plus or
minus its own bank number. The sum of the bank is dis-
played in Rl of the DSKY. The bank number (actual bank
number used to sum the bank shifted 5 ptaces left) is dis-
played in R2 and the bugger word is displayed in R3. Entering
a proceed verb (33) from the DSKY will display the same in-
formation for the next higher bank. Entering a terminate
verb (34) from the DSKY will end the SHOWSUM routine.

29

APPENDIX

The flow charts in this appendix use both AGC instructions and word descrip-
tions to explain the subroutines, The purpose was to use word descriptions most of
the time and utilize instructions only where they were necessary to make the overall

picture clear.
Some explanation of symbols:
b(X) means before contents of X register
¢(X) means contents of X register

SKEEP1 through SKEEP7 are erasable registers,

31

TC + TCF

l

TC +2
y

TCF +2]

TC Q

TC CCSCHK |

to CCSCHK

32

CCSCHK

l -3 in A register] ERRORS’
[

b(A) = 20
b(A) = +NON-ZERO

b(A)

~-NON-ZERO
+2

"o

c(A)

b(4) = x0
b(A) = -NON-ZERO

b(A) = +NON-ZERO
c(A) = +1

b(SKEEP1) = 0
SKEEP1

SKEEP1

b(SKEEP1) = -NON-ZERO

b(SKEEP1) = +NON-ZERO
c(A) = +0

b(A) = +0
b(A) = tNON-ZERO

b(A) = +0

b(A) = tNON-ZERO

b(A) = -0

b(A) = tNON-ZERO

Check read back into
erasable memory fea-
ture of CS instruction

l

to BZMFCHK

33

BZMFCHK

BZMF on +NON-ZERO num-
ber and see if routine continues
or jumps

jumps

ERRORS l

continues

BZMF on -NON-ZERO num-
ber and see if routine continues

continues

or jumps
ljumps

BZMFon overflow with
+0(01-00000) and see if rou-
tine- continues or jumps

jumps

l continues

BZMPF on +0 and see if rou-
time continues or jumps

continues

jumps

BZMF on ~0.and see if rou-
tine continues or jumps

continues

jumps

go to RESTOREL1

34

RESTOREL1

put 00177 in SR register

CCs, CS, AD, MSU, SU,
CA, MASK shift right re~
gister and check c(A) for
+1

NO

ERRORS

A

YES

MP, DV, shift right re-
gister and check c(SR) still
+1

NO

YES

go to RESTORE?

35

RESTORE2

put +1 in SKEEP1 ERRORS

put -1 in SKEEP2

DCA SKEEPI and 2
DCS SKEEP1 and 2

check c(A) for -1 NO
check c(L) for +1)

YES

DCA SKEEPI1 and 2
and check b{SKEEP1) was +1
and b(SKEEP2) was -1

NO

YES

go to RESTORE3

36

RESTORE3

put CS A in SKEEP1
and TC Q in SKEEP2
of erasable memory

put +1 in A register
and go to SKEEP1

check c(A) for +1 after
coming back from erasable

NO

ERRORS

memory

YES

c(A) is +0. go back to
SKEEP1

check c(A) for +0 after
coming back from erasable

NO

memory

YES

go to BZFCHK

37

BZFCHK

ERRORS

BZF on tNON-ZERO and
see if routine continues or jumps
jumps

continues

BZF on -NON-ZERQO and .
see if routine continues or . jumps
jumps

continues

BZF on overflow with '
+0(01-00000) and see if .__jumps
routine continues or jumps

continues

BZF on underflow with :
-0(10-37777) and see if jumps
routine continues or jumps

continues

BZF on +0 and see if

routine continues or continues
jumps :

jumps
BZF on -0 and see if
routine continues or - continues
jumps

jumps

go to DXCH+DIM

38

DXCH+DIM

form overflow with +1(01-00001)
in A register

TS SKEEP2

no jump

ERRORS

jump

put -1 in SKEEP2
put 40000 .in L register
put 37777 in A register

DXCH SKEEP]1 and check

NO

c(A) for +1 and (L) for -1

YES

DIM SKEEPI1 and SKEEP2

check ¢(SKEEP1) for 37776

NQ

and c(SKEEP2) for 40001

YES

puf +1 in A register,
DIM "A" twice and check

NO

for -0

YES

DIM +0 and check if result

NQ

is +0

YES

go to DAS+INCR

39

D--LCHK

form underflow in Q register

ERRORS

Y

CS Q .
TS A no jump
jump
/
DCA L .
TS A Jump
no jump
check c(A) is -1 NO
YES
ADDRCHK
A J
put 20000 in A and Q registers
ADS Q
ADS Q no jump
TS A
jump
ADS Q and check
c(A) is +1 NO
YES

\

/

go to RUPTCHK

40

DAS+INCR

put -1 in L register
and +2 in A register

DAS A and check c(A)
for +4 and ¢(L) for -2

NO

ERRORS

YES

put 3777 in SKEEP3
put 40000 in SKEEP4
put -2 in L register
put +3 in A register

DAS SKEEPS3

check ¢(A) for +0

check c¢(L) for +1

check c(SKEEP3) for +1
check c(SKEEP4) for -1

NO

YES

INCR -1(SKEEP4)
and check for -0

NO

YES

INCR +0 and check
for +1

put 40000 in SKEEP1
put 37777 in SKEEP2
put +3 in L register
put -3 in A register

DAS SKEEP1

check ¢(A) for -1

check ¢(SKEEP1) for +1
check c(SKEEP2) for -2

NO

YES

go to MPCHK

41

MPCHK

put +1 in A register
and AUG A register

multiply +2 by 37777

AD L and rnultiply
37777 by -2

ADS L and check

ERRORS

c(A) is 40000 NO

YES

multiply 40000 by +2

\

put -1 in SKEEPS,
AUG SKEEPS6 and use
in next multiply

\

multiply 40000 by -2
check c(A) for +1 NO

and c(L) for 37776

YES

put -1 in A register
-2 is in SKEEPS

ADS SKEEPS6 and check NO
c(A) and ¢c(SKEEPS) for -1

ES

go to DVCHK

42

DVCHK

ERRORS
[TS L with overflow ! no jump ‘
jump.
L TS SKEEP2 with underﬂowj} ‘ no jump
jump

divide -(0) + (20000) by (00001)

and check that c(L) = +0 NO

YES

divide +(0) - (20000) by -(00001)
check c(A) for 20000 : NO
and c(L) for -0

YES

divide +(17777) + (37777) by -(20000)

!

exchange c¢(L) and c(A) and

divide -(17777) -(37777) by +(20000)
check c(A) for -(37777)

and c(L) for -(17777)

NO

YES

divide -(17777) +(377717) by +(20000)
check c(A) for -(37774) NO
and c(L) for -1

YES

divide +(37776) + (0) by -(37776)
and QXCH L register

Y

check c(A) for -(37777) and
contents L, for -(37776) NO
and c(A) for +(37776)

YES

QXCH SKEEPI1 and
check c¢(Q) for +1 NO
and c(SKEEP1) for +3

YES

go to MSUCHK

43

MSU (77777) (77777)
and check c(A) is +0

MSUCHK

NO

ERRORS

YES

MSU (00000) (77777)
and check c(A) = +0

NO

YES

MSU (37777) (400000)
and check c(A) for -1

NO

YES

go to MASKCHK

44

MASKCHK

ERRORS

MASK (00007) (77770) and

check c(A) is +0 NO

YES

MASK (00001) (00007) and

check c(A) is +1 NO

YES

N];)X+SU

put +1 in A, L, and SKEEP1
registers

!

NDX A

AD 000 forms AD L

subtract SKEEP1 and

check c(A) +1 NO

YES

EXTEND
NDX L forms SU L
SU 0000

Y

check c(A) - 1 NO

YES

go to D--SC

45

D--5C

ERRORS

put +2 in L register and
+1 in A register

DCS A and check

c(A) is -1 NO

YES

DXCH L and check
c{A) = +3, c(L) =40, NO
and c(Q) = +1

YES

put -1 in Q register and
+1 in A register (c(L) = +0)

DCA L and check
c(A) = c(L) = ¢(@) = b(Q) = -1

NO

YES

go to D--LCHK

46

D--L.CHK

"ERRORS

form underflow in Q register

'

gg g no jump
jump
?SA k jump
no jump
check c(A) is -1 NO
YES
ADDRCHK

put 20000 in A and Q registers

ADS Q
ADS @ no jump
TS A
jump‘
ADS Q and
check c(A) is +1 NO

YES

go to RUPTCHK

47

RUPTCHK

put +0 in ZRUPT register ..

look for TIME4 to increment

¢(ZRUPT) = +0

has incremented

initialize TIME3 to overflow
as soon as possible

loop in overflow-underflow
loop for 2-1/2 MS

INHINT and eliminate underflow

RELINT (should allow an interrupt

did occur

check if an interrupt -

NO

"ERRORS

YES

check if ¢c(ZRUPT) is correct

NO

YESl

go to SMODECHK

48

IN-OUT1

ERRORS

put -1 in Q register using
WRITE instruction

check c(A) is still -1 NO
YES

LXCH Q

READ L NO

and check for -1

YES

CA L and

.check for -1 _NO
YES

go to IN-OUT2

49

IN-OUT2

ERRORS

3

put -3 in L register
and 37776 in A register

ROR L

and check c(A) for -1 NO

YES

put 37776 in A register

l

WOR L NO
and check c¢(A) and (L) for -1

YES

go to IN-OUT3

50

IN-OUT3

ERRORS

put 40001 in L register
put 17777 in A register

RAND L
and check c(A) is +1 : NO
YES

put 17777 in A register

WAND L NO
check c(A) and c(L.) is +1 ‘
YES

put -5 in L, register
put +6 in A register

y

RXOR L
check c(A) is -3
check ¢(L) is -5 —NO

YES

go to COUNTCHK

51

COUNTCHK

put 37777 in SKEEP6
put 40000 in SKEEPT7

P

put ¢(SKEEPS6) in Q register

put ¢(Q) in A register
through L register

-NON-ZERO

+NON-ZERO

AD e(L) and NO

ERRORS

)

check for ~1

YES

check for new job

put complement of c(SKEEPS6)
in Q register

¥
put c(A) in SKEEPS

AD SKEEPT to c(A) NO

and check for -1

YES l

INCR SKEEP7
il

)
add ¢ (SKEEP7) and ¢(SKEEPS) NO

and check for =0

YES l

go to O-UFLOW

52

Q-UFLOW

put 40000 in SKEEPS
put 37777 in A register

Py

[INHINT J

!

AD 37777 to c(A) register
AD 00001 to c(A) register
and put in Q register

~-NON-ZERO +0

CCS R

ERRORS

+NON-ZERO

r TS SKEEP4] no jump

jump

add c(SKEEP4) and ¢(SKEEP5) NO

and check result is -1

YES

add c(SKEEP5), 40000, and 77776
and put in Q register
- l

: ¥ ’
TS SKEEP3 | no jump

jump

add c(SKEEP3) and c(SKEEPS5)
and check result is -1

RELINT and check for new job

!

CA SKEEP4

DIM SKEEPS5
]

' 1
‘ check c(SKEEPS) is +0

NO

)

YES

check ¢ (SKEEP4) is 37777 NO

YES
RELINT T
y

go to SMODECHK

9]

L 9°G % e 1 MNVEH
SY08UD 03} SZI[BTYIU

4

ON

MHDHIND 03 08

SHX

payoayd uvaq sey
usAas JINVEH JT 4o2y0

om} JINVEX
¥P9YD 01 BZITRTIIUL

ON

f

mm.&

‘Pe}¥OaYD 9q 03} SUBQ 1XaU
ST oM} 3INVHH J1 Ho8yd

f

HuEq
10} JINVE

J3ydiy jxau
. SZI[ELTuL

!

[pAHES Ul T+ nd |

1S®e[payoayo
s[qeseas
payosyImsupn

1S®e[payoayd jueg

—

YAEESIS Ut 0+ nd
*AIoWsW S[qBSEIS

POYDII MSUN BZITRITU]

iSer.
PayOoYD S[gesBIS PayOIIMSUN
10 sYuEeq ST(BSEJIS UE SeMm

SHA

SIqeseIs paydjrmsun

J0 ueq Juriseys yinoayy bipk-1ip]
*
LdEFDIS U WO UL ccﬂ
29151301 JYNVHF Ul (edTENS)° nd
¥
qol mau 103 yoayd
PUB zddES Ul (INVEM)° nd
. L]
13181833 FUOLSHHA UL 0+ 1nd |
¥
[(t+x)° puE (x)o reuistac 8103504 |

SHA

1- ST (X)° 30

ON

JuawreTdwiod syl pue ([+X)0 3y
SUIpp® JO 3TNS2I AU} 1BY) HO8YD
*

SJ193S1891 T+X PUE X Ul SS0JppE
uMo J12Y} Jo jusuwardurod ayj ind

SHA

I- ST (1+X)°
JO juowrardwod ayj pue (X)°

SYoyy"

ON

8y} FUIPpE Jo INSaI 3y} }ey} HOaYD
*

Sao3s1d0a
I+X PUB ¥ Ul SSaJppe umo jnd
¥
[0+ # (agorsmyum)o euns ayeul |
1
LATANS PUE 9IHAIS
Ul (T + X)O pUB (X)0 2J018

|

AHOSVYH

[_oaez INVET Wooup 03 sziteniu |
[}

_ PAEESIS Ul T+ nd]

ON

_ ! —

54

CNTRCHK

put 00050 in SKEEP2
and A register

v

[add 00010 to c(A)]

CS erasable addresses
60 through 11 octal

+NON-ZERO
CCS SKEEP2

+0

go to CYCLSHFT

55

CYCLSHFT

put 25252 in CYR, CYL,
SR, EDOP registers

y

add c(CYR), c(CYL),
c¢(SR), c(EDOP), and a
constant and check that
result is -1

NO

ERRORS

YES
y

add c(CYR), c¢(CYL),
c¢(SR), c(EDOP), and
+1 and check that result
is -1

NO

YES

increment SCOUNT +1

1_

go to SMODECHK

56

ROPECHK OR SHOWSUM

put -0 in SKEEPS§ put +1 in SKEEPS,

put +0 in SMODE,
inftialize SELFRET to address
of SELICHK

gset flag to check common fixed
banks 00 and 01

) : i

initialization required to check
a common fixed bank

[} [2
addSUM of bank(check for new |

job between additions)

CSS SKEEPS6

is sum of bank the same
as bank number

display (1)SU M of bank, (2) actual
bank: number, and (3) bugger

NO | YES word in R1, R2, and R3 of the
:) DSKY
ERRORS . I]
[has lost bank been checked
YES NO
what kind of bank is to be
checked next ?
common fixed | fixed fixed
is bank 02 next banks) is bank 04 next bank to be
to be checked checked
[no & YES] YES NO

initialize to check
banks 03

fixed banks 02 and 03 rest of common

lset flag to check fixed set flag to check
L fixed banks

initialization requiredJ

to check banks 02
-0 @ +1

]
go to SMODCHK start SHOWSUM again

57

MPNMBRS

(20 second multiplier check)

put 37777 in SKEEP2

NO

!

put 37777 in A register

multiply by c(SKEEP2)

AD c(L.) and 40000
to c(A) register and

NO

ERRORS

check result is -0

YES

check for new job

count down c(SKEEP2) by one

check that last multiplier
was 00001

YES

to second multiply loop

58

MPNMBRS (Cont'd)

put 37777 in SKEEP2

¥

put -1 in A register

multiply by c(SKEEP2)

check that c(A) is -0

NO

ERRORS

4

YES

add c(SKEEP2) to c{L) and
check that result is -0

NO

YES

L check for new job l

Lcount down ¢(SKEEP2) by one]

NO check that last multiplier

was 00001

YES

go to third multiply loop

59

MPNMBRS (Cont'd)

put 37777 in SKEEP1

SO

NO

s

put ¢(SKEEP1) in A register

multiply by 37777

add c(L) and 40000 to
c(A) register and check

NO

ERRORS

result is -0

YES

check for new job

count down c(SKEEP1) by onew

check that last multiplicand
was 00001

YES

go to fourth multiply loop

60

MPNMBRS (Cont'd)

put 37777

in SKEEP1

¥

put c(SKEEP1) in the A register

multiply by -1

ERRORS

and check

check ¢(A) is -0 NO
YES
add ¢(SKEEP1) to c(L) NO

result is -0

YES

check for

new job

count down c(SKEEP1) by one]

NO check that last multiplicand

was 00001

YES

go to SMODECHK

61

DVCHECK

put -(03777) in SKEEP4
increment SKEEP4 register
put 20000 in SKEEP1

put -(20000) in SKEEP2

put -(37777) in L register
put 17777 in A register

divide +17777-377717 by 20000
put c(A) in SKEEP7 and check

NO

ERRORS

that c(L) is +1

YES

divide +17777-37777 by 20000
add (SKEEP7) to c(A) and check

NO

result is -0, Check that c(L)
is +1

YES

divide -17777+37777 by 20000
put c(A) in SKEEPS

NO

add c¢(SKEEP7) to c(A) and check
that result is -0, Check that
c(L) is -1

YES

divide -17777+37777 by -20000
add ¢(SKEEPS6) to c(A) and check

NO

result is -0. Check that c(L) is
-1, Check that ¢c(SKEEPS) is
-37774,

YES

go to next divide subroutine (DV2CHK)

62

DVCHECK (Cont'd)

|

divide +17777+37777 by 20000

check that c(A) is +37777

check that c(L) is +17777 NO

ERRORS

YES

DV4CHK

l

divide +37776+0 by +37776

check that c(A) is +37777

check that (L) is +37776 NO

YES

go to next divide subroutine (DV5CK)

63

DVCHECK (Cont'd)

l

put +0 in SKEEP1
put -0 in SKEEP2

divide +0+0 by +0
put c(A) in SKEEP7 NO

ERRORS

check c(l.) is +0

|YES

divide -0+0 by -0
put c(A) in SKEEPS6 A
add c(SKEEPT) to c(A) and NO

check that result is -0
put ¢(L) in A register

YES

divide +0-0 by +0
add c(SKEEPT) to c(A) and
check result is -0. Check NO

that c(L) is -0

YES

divide +0-0 by -0 | |
add ¢(SKEEPS6) to c(A) and

check result is ~0. Check NO

c¢(L) is -0. Check c(SKEEPS)
is -377717,

YES

check for new job

is ¢c(SKEEP4) -0 NO

YES

increment SCOUNT +2 register

'

start SELF-CHECK again

64

go back to
DVCHECK+3
(DVLOOP)

ROPECHK OR SHOWSUM

Lput -01in SKEEPG_]

put +1 in SKEEPS6.
put +0 in SMODE,
initialize SELFRET to address

of SELFCHK

'

set flag to check common fixed
banks 00 and 01

5 | ;

initialization required to check
a common fixed bank

5 ; i
add SUM of bank(check for new
job between additions)

CSS SKEEPS6

is sum of bank the same
as bank number

display (1)SUM of bank, (2} actual
bank number, and (3) bugger
word in R1, R2, and R3 of the
DSKY

NO YES
ERRORS

¥
Bas lost bank been checked |

YES NO

what kind of bank is to be
checked next ?

common fixed | _Lfixed fixed

}

is bank 02 next banks
to be checked

is bank 04 next bank to be
checked

|vo YES J YES I
set flag to check fixed set flag to check initialize to check
fixed banks 02 and 03 rest of common banks 03
‘ fixed banks
initialization required
to check banks 02

|

CCS SKEEPS

go to SMODCHK start SHOWSUM again

65

-

Spuod9s g[-G JI03 UO
KLerds1p K3ISA 24®91

T
Ui £31arioe
JI9jndurod uo sAeal
sferdsp X318A
Tre ut syuerq isnf

doot a1p1

dnsjoeq 03 o8

[gammis sa |

Spuodas Z1-9

203 3181p yoes Lerdsip

f

*(ouar} suo je sAerd
-S1p 1€ ut #131p 2Uo)

sAerdsip x3sd 11
ui oxoz ysnoayy g md

L

_

: *YS B} unou
-quaA pue S LJ1A1308
aendwos uo uany ‘udis
snutwt ur d *oxsz

sAe1dsip ASA 2ABO]

‘U0 Ys®iJ unou
-q1oA pue BT £)1A130®
Jadurod 9ABI["OJDZ

gAerdsip X318 aaBel

1

[eammsts ur 1- nd |
¥

gdAmES SL |
L Eicice: S IE='e}0)
OYHAZ-NON+ 7

0+

zdmEmasIs ut 1+ ind
£dmE>S ut ¢~ nd

j

OY¥YHZ-NON-

LANYEL XU
YIWNLXN 01 03 o3 ysanb
-9 UM ISTIHEM SZITRIIIUL.

—4 f)

gy pue ‘zg ‘14
Ul JoquINu umop junod o3}

SAEAESIS Ul ue} Tewroap nd

ﬂu&ﬁmﬁ SAONS UL 0+ Ei

SIHDA3SA

66

Internal

M. Adams (MIT/GAEC)
J. Alekshun

R. Alonso

R. Battin

H. Blair-Smith

P. Bowditch/F. Siraco
D, Bowler

R. Byers

G. Cherry

E. Copps

R. Crisp

J. Dahlen

J. DeLisle

G. Edmonds

J. B. Feldman

P, Felleman

S. Felix

J. Flanders

J. Fleming

F. Gaunt (3)

E-2065

DISTRIBUTION LIST

A, Green

F, Grant
EldonHall

T. Hemker (MIT/NAA)
D. Hoag

A, Hopkins

F. Houston

L. B. Johnson
M. Johnston
A, Kosmala
A, Laats

A, LaPointe
L. Larson

S. Laquideira

T. M. Lawton (MIT/MSC)

D. Lickly

G. Mayo

R. McKern
James Miller

John Miller

J. Nevins

J. Nugent

F. O'Glishen
M. Petersen
R. Ragan

G. Schmidt

R. Scholten

D. Scolamiero
N. Sears

J. Shillingford
E. Smally (7)
W, Stameris
M., Trageser
R. Weatherbee
R. White

R. Woodbury
W. Wrigley
Apollo Library (2)

MIT/IL Library (6)

External:

W. Rhine (NASA/MSC) (2)
NASA/RASPO (1)
AC Electronics (3)
Kollsman (2)
Raytheon 2)
Major H. Wheeler (AFSC/MIT) (1)
MSC: (25 + 1R)

LRC:

National Aeronautics and Space Administration
Manned Spacecraft Center

Apollo Document Distribution Office (PA2)
Houston, Texas 77058

)

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia

Attn: Mr., A, T. Mattson

GAEC: (3 + 1R)

NAA:

Grumman Aircraft Engineering Corporation
Data Operations and Services, Plant 25
Bethpage, Long Island, New York

Attn: Mr, E, Stern

(18 +.1R)

North American Aviation, Inc.
Space and Information Systems Division
12214 Lakewood Boulevard
Downey, California
Attn: Apollo Data Requirements
Dept, 096-340, Bldg. 3, CA 99

NAA RASPO: (1)

NASA Resident Apollo Spacecraft Program Office
North American Aviation, Inc.

Space and Information Systems Division

Downey, California 90241

ACSP RASPO: (1)

National Aeronautics and Space Administration
Resident Apollo Spacecraft Program Officer
Dept, 32-31

AC Electronics Division of General Motors
Milwaukee 1, Wisconsin

Attn: Mr. W. Swingle

Defense Contract Administration (1)
Service Office, R

Raytheon Company

Hartwell Road

Bedford, Massachusetts 01730

Mr. S. Schwartz (1)
DOD, DCASD, Garden City

605 Stewart Avenue

Garden City, L. I., New York

Attn: Quality Assurance

Mr. D- F. Kohls (1)
AFPRO (CMRKKA)

AC Electronics Division of General Motors
Milwaukee 1, Wisconsin 53201

