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PREFACE

HE present book is intended, as far as pos-
sible, to give an exact insight into the
theory of Relativity to those readers who,

from a genera scientific and philosophical point
of view, are interested in the theory, but who are
not conversant with the mathematicd apparatus*
of theoretical physics. The work presumes a
standard of education corresponding to that of a
university matriculation examination, and, de-
spite the shortness of the book, a fair amount
of patience and force of will on the part of the
reader. The author has spared himself no pains
in his endeavour to present the main ideas in the
simplest and most intelligible form, and on the

! The mathematicd fundaments of the spedal theory of rela-
tivity are to be found in the origina papers of H. A. Lorentz, A.
Einstein, H. Minkowski,” published under the title Das Relativitéts-
prinzip (The Principle of Relativity) in B. G. Teubner’s coll ection
of monographs Fortschritte der mathematischen Wissenschaften (Ad-
vances in the Mathematicd Sciences), also in M. Laue’'s exhaustive
bodk Das Relativitats prinzip — published by Friedr. Vieweg & Son,
Braunschweig. The general theory of relativity, together with the
necessary parts of the theory of invariants, is dedt with in the
author’s bodk Die Grundagen der allgemeinen Relativitatstheorie
(The Foundations of the General Theory of Relativity) — Joh.
Ambr. Barth, 1916; this bodk assumes ome familiarity with the
spedal theory of relativity.

v

[" Minkowski‘ — J.M.]
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whole, in the sequence and connection in which
they adualy originated. In the interest of
cleaness it appeaed to me inevitable that |
should repeat myself frequently, without paying
the dlightest attention to the degance of the
presentation. | adhered scrupulously to the
precept of that brilliant theoretical physicist,
L. Boltzmann, acording to whom matters of
elegance ought to be left to the tailor and to the
cobder. | make no pretence of having with-
held from the reader difficulties which are in-
herent to the subjed. On the other hand, | have
purposely treated the empirical physicd founda-
tions of the theory in a “step-motherly” fashion,
so that readers unfamiliar with physics may naot
fed like the wanderer who was unable to seethe
forest for trees. May the book bring some one

afew happy hours of suggestive though!
A. EINSTEIN
December, 1916

NOTE TO THE THIRD EDITION

N the present yea (1918) an excelent and
detalled manual on the general theory of
relativity, written by H. Weyl, was pub-
lished by the firm Julius Springer (Berlin). This
book, entitled Raum — Zeit — Materie (Space—
Time — Matter), may be warmly recommended
to mathematicians and physicists.
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BIOGRAPHICAL NOTE

LBERT EINSTEIN is the son of German-
Jewish parents. He was born in 1879 in
the town of Ulm, Wirtemberg, Germany.

His schooldays were spent in Munich, where he
attended the Gymnasium until his gxteenth yea.
After learing schod a Munich, he acompanied his
parents to Mil an, whence he proceeled to Switzer-
land six months later to continue his studies.

From 1896 to 1900 Albert Einstein studied
mathematics and physics at the Technical High
School in Zurich, as he intended becoming a
secondary schod (Gymnasium) teecher. For
some time dterwards he was a private tutor,
and having meanwhile becmme naturalised, he
obtained a post as enginea in the Swiss Patent
Officein 1902 which pasition he ocacupied till 1909
The main ideas involved in the most important
of Einstein's theories date back to this period.
Amongst these may be mentioned: The Speaal
Theory of Relativity, Inertia of Energy, Theory of
the Brownian Movement, and the Quantum-Law
of the Emisson and Absorption of Light (1905).

These were followed some yeas later by the
Vil
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Theory of the Spedfic Heat of Sdid Bodies, and the
fundamenta idea of the General Theory of Relativity.

During the interval 1909 to 1911 he occupied
the post of Profesoor Extraordinarius at the
University of Zurich, afterwards being appointed
to the University of Prague, Bohemia, where he
remained as Professor Ordinarius until 1912,
In the latter yea Professor Einstein accepted a
similar chair at the Polytechnikum, Zurich, and
continued his activities there until 1914, when
he recived a cdl to the Prussian Academy of
Science, Berlin, as successor to Van't Hoff.
Professor Einstein is able to devote himself
fredy to his dudies at the Berlin Academy, and
it was here that he succeeded in completing his
work onthe General Theory of Relativity (1915
17). Professor Einstein aso lectures on various
special branches of physics at the University of
Berlin, and, in addition, he is Director of the
Institute” for Physical Reseach o the Kaiser
Wil helm Gesell schaft.

Professor Einstein has been twice married.
Hisfirst wife, whom he married at Berne in 1903,
was a fellow-student from Serbia. There were
two sons of this marriage, bath of whom are liv-
ing in Zurich, the elder being sixteen yeas of age.
Recently Professor Einstein married a widowed
cousin, with whom he is now living in Berlin.

R. W. L.

[" Institnte — J.M.]


http://books.google.com/books?id=n8QKAAAAIAAJ&pg=PP19

TRANSLATOR’S NOTE

N presenting this trandation to the English-
I reading public, it is hardly necessary for me

to enlarge on the Author’s prefatory remarks,
except to draw attention to those additions to the
book which donot appea in the original.

At my request, Professor Einstein kindly sup-
plied me with a portrait of himself, by one of
Germany’s most cdebrated artists. Appendix III,
on “The Experimental Confirmation of the Gen-
era Theory of Relativity,” has been written
gpecialy for this trandation. Apart from these
valuable alditions to the book, | have included
a biographicd note on the Author, and, a the
end of the book, an Index and a list of English
references to the subject. This list, which is
more suggestive than exhaustive, is intended as
a guide to those readers who wish to pursue the
subject farther.

| desire to tender my best thanks to my col-
leagues Professor S. R. Milner, D.Sc., and Mr.
W. E. Curtis, A.R.C.&., FRA.S, dso to my
friend Dr. Arthur Holmes, A.R.C.Sc., F.G.S,,

IX
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of the Imperial College, for their kindness in
reading through the manuscript, for helpful
criticism, and for numerous suggestions. | owe
an expression of thanks also to Messrs. Methuen
for their ready counsel and advice and for the
cae they have bestowed on the work during the

course of its publication.
ROBERT W. LAWSON
THE PHYSICS LABORATORY

THE UNIVERSITY OF SHEFFIELD
June 12, 1920
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RELATIVITY

PART |
THE SPECIAL THEORY OF RELATIVITY

PHYSICAL MEANING OF GEOMETRICAL
PROPOSITIONS

N your schooldays most of you who read this
book made agyuaintance with the noble build-
ing of Euclid’s geometry, and you remember

— perhaps with more respect than love — the
magnificent structure, on the lofty staircase of
which you were chased about for uncounted
hours by conscientious teadhers. By reason of
your past experience, you would certainly regard
every one with dsdain who should pronounce
even the most out-of-the-way propasition of this
science to be untrue. But perhaps this feeling d
proud certainty would leave you immediately if
some one were to ask you: “What, then, do you
mean by the assertion that these propositions are
true?’ Let us proceed to give this question a
little consideration.

Geometry sets out from certain conceptions such
as “plane” “poaint,” and “straight line,” with

1
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which we are &le to associate more or less defi-
nite ideas, and from certain simple propositions
(axioms) which, in virtue of these ideas, we ae
inclined to aacept as “true.” Then, on the basis
of alogicd process, the justification of which we
fed ourselves compelled to admit, all remaining
propasitions are shown to foll ow from those axioms,
I.e. they are proven. A proposition is then correct
(“true”) when it has been derived in the remg-
nised manner from the axioms. The question of
the “truth” of the individual geometrical propo-
sitions is thus reduced to ane of the “truth” of
the aioms. Now it has long been known that
the last question is not only unanswerable by the
methods of geometry, but that it is in itself en-
tirely without meaning. We canot ask whether
it is true that only one straight line goes through
two points. We an only say that Euclidean ge-
ometry deds with things cdled “straight lines,”
to each of which is ascribed the property of being
uniquely determined by two points stuated on it.
The oncept “true’” does not tally with the
assertions of pure geometry, becaise by the word
“true” we ae eventualy in the habit of desig-
nating always the correspondence with a “red”
object; geometry, however, is not concerned with
the relation d the ideas involved in it to oljects
of experience, but only with the logical connedion
of these ideas amongthemselves.
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GEOMETRICAL PROPOSITIONS 3

It is not difficult to understand why, in spite of
this, we fed constrained to cdl the propositions of
geometry “true.” Geometricad ideas correspond
to more or less exact objects in nature, and these
last are undoubtedly the exclusive cause of the
genesis of those ideas. Geometry ought to refrain
from such a wurse, in arder to give to its structure
the largest possible logical unity. The pradice
for example, of seeing in a“distance” two marked
positions on a practically rigid body is ssmething
which is lodged deeply in our habit of thought.
We ae acastomed further to regard three points
as being situated on a straight line, if their ap-
parent positions can be made to coincide for ob-
servation with one eye, under suitable choice of
our placeof observation.

If, in pusuance of our habit of thought, we now
supdement the propositions of Euclidean geometry
by the single propasition that two points on a
practicdly rigid body always correspond to the
same distance (line-interval), independently of
any changes in pasition to which we may subject
the body, the propositions of Euclidean geometry
then resolve themselves into propasitions on the
possble relative position d pradicdly rigid bodes.

It follows that a natural objed is associated also with a straight
line. Three points A, B and C on a rigid bod/ thus lie in a straight
line when, the points A and C being gven, B is chosen such that the

sum of the distances AB and BC is as short as posdble. This in-
complete suggestion will sufficefor our present purpose.
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4 SPECIAL THEORY OF RELATIVITY

Geometry which has been supplemented in
this way is then to be treated as a branch o
physics. We can now legitimately ask as to the
“truth” of geometricd propositions interpreted
inthisway, sincewe ae justified in asking whether
these propaositions are satisfied for those red things
we have associated with the geometrical ideas. In
less exact terms we can express this by saying
that by the “truth” of a geometricd proposition
in this ®nse we understand its validity for a on-
struction with ruler and compasses.

Of course the conviction of the “truth” of geo-
metrical propositions in this sense is founded
exclusively on rather incomplete experience For
the present we shall assume the “truth” of the
geometricd propositions, then at a later stage
(in the general theory of relativity) we shall see
that this “truth” is limited, and we shall consider
the extent of itslimitation.
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I
THE SYSTEM OF CO-ORDINATES

N the basis of the physicd interpretation of
distance which has been indicated, we ae
also in a position to establish the distance

between two points on a rigid body by means of
measurements. For this purpose we require a
“distance” (rod S) which is to be used once and
for dl, and which we employ as a standard measure.
If, now, A and B are two points on a rigid body,
we can construct the line joining them according
to the rules of geometry; then, starting from A,
we @an mark off the distance S time dter time
until we reach B. The number of these operations
required is the numerica measure of the distance
AB. This is the basis of al measurement of
length.!

Every description of the scene of an event or of
the position of an objed in space is based on the
specification of the point onarigid body (body of
reference) with which that event or object coin-

! Here we have assumed that there is nothing left over, i.e. that
the measurement gives a whole number. This difficulty is got over
by the use of divided measuringrods, the introduction of which
does not demand any fundamentally new method.

5
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cides. This applies not only to scientific descrip-
tion, but aso to everyday life. If | anayse the
place specification “Trafalgar Square, London,” *
| arrive & the following result. The erth is the
rigid body to which the specification of place
refers, “Trafalgar Square, London” is a well-
defined point, to which a name has been assigned,
and with which the event coincidesin space?
This primitive method d place spedfication
deds only with daces onthe surfaceof rigid bodes,
and is dependent on the existence of paints on
this surfacewhich are distinguishable from eat
other. But we can free ourselves from both of
these limitations without atering the nature of
our spedfication of position. If, for instance a
cloud is hovering over Trafalgar Square, then we
can determine its paosition relative to the surface
of the eath by ereding a pole perpendicularly on
the Square, so that it reaches the doud. The
length of the pole measured with the standard
measuring-rod, combined with the specification of
the position o the foot of the pole, supplies us
with a complete place specification. On the basis

L1 have chosen this as being more familiar to the English reader
than the “Potsdamer Platz, Berlin,” which is referred to in the
origina. (R.W.L.)

2|t is not necessary here to investigate further the significance
of the expresson “coincidence in space” This conception is guf-
ficiently obvious to ensure that differences of opinion are scarcdy
likely to arise asto its applicability in pradice
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of thisillustration, we ae ale to seethe manner
in which arefinement of the conception d paosition
has been developed.

(&) We imagine the rigid body, to which the
place specification is referred, supplemented in
such a manner that the object whose paosition we
requireis reached by the completed rigid body.

(b) In locating the position d the object, we
make use of a number (here the length o the pde
measured with the measuring-rod) instead of
designated points of reference.

(c) We speak of the height of the cloud even
when the pole which reaches the doud has not
been erected. By means of optical observations
of the cloud from different positions on the
ground, and taking into account the properties of
the propagation o light, we determine the length
of the pole we shoud have required in order to
read the doud.

From this consideration we seethat it will be
advantageous if, in the description of position, it
shoud be posshble by means of numericd measures
to make ourselves independent of the existence of
marked positions (passessing names) on the rigid
body of reference. In the physics of measurement
thisis attained by the applicaion d the Cartesian
system of co-ordinates.

This consists of threeplane surfaces perpendicu-
lar to each ather and rigidly attached to a rigid
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body. Referred to a system of co-ordinates, the
scene of any event will be determined (for the
main part) by the speafication of the lengths of
the three perpendiculars or co-ordinates (X, Y, 2)
which can be dropped from the scene of the event
to those three plane surfaces. The lengths of
these three perpendiculars can be determined by
a series of manipulations with rigid measuring-
rods performed acarding to the rules and methods
laid down by Euclidean geometry.

In practice, the rigid surfaces which constitute
the system of co-ordinates are generally not
avail able; furthermore, the magnitudes of the -
ordinates are not actually determined by con-
structions with rigid rods, but by indirect means.
If the results of physics and astronomy are to
maintain their cleaness the physical meaning of
specifications of position must always be sought
in accordancewith the &bove mnsiderations.*

We thus obtain the following result: Every
description of events in space involves the use of
a rigid body to which such events have to be
referred. The resulting relationship takes for
granted that the laws of Euclidean geometry hold
for “distances,” the “distance” being represented
physically by means of the wmnvention o two
marks on arigid body.

L A refinement and modificaion of these views does not beaome
necessary until we come to ded with the general theory of relativity,
treaed in the second part of this bodk.
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1l
SPACE AND TIME IN CLASSCAL MECHANICS

“ HE purpose of medhanicsisto describe how
bodies change their position in spacewith
time.” | should load my conscience with

grave sins against the saaed spirit of lucidity

were | to formulate the ams of mechanics in this
way, without serious reflection and detailed ex-
planations. Let us proceed to disclose these sins.

It is not clea what is to be understood here by

“position” and “space” | stand at the window

of aralway cariage which is travelling uniformly,

and drop a stone on the embankment, without
throwing it. Then, disregarding the influence of

the air resistance, | see the stone descend in a

straight line. A pedestrian who observes the mis-

deed from the footpath notices that the stone
falls to earth in a parabolic curve. | now ask:

Do the “positions’ traversed by the stone lie “in

redity” on a straight line or on a parabola?

Moreover, what is meant here by motion “in

space’' ? From the mnsiderations of the previous

section the answer is self-evident. In the first

place, we entirely shun the vague word “space”
9
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of which, we must honestly adknowledge, we can-
nat form the slightest conception, and we replace
it by “motion relative to a practicdly rigid body
of reference” The positions relative to the body
of reference (ralway cariage or embankment)
have dready been defined in detail in the preced-
ing section. If instead of “body of reference”
we insert “system of co-ordinates,” which is a
useful idea for mathematical description, we ae
In aposition to say: The stone traverses a straight
line relative to a system of co-ordinates rigidly
attached to the cariage, but relative to a system
of co-ordinates rigidly attached to the ground
(embankment) it describes a parabola. With the
aid o this example it is clealy seen that there is
no such thing as an independently existing tra-
jedory (lit. “path-curve” '), but only a trgjedory
relative to a particular body of reference

In order to have a complete description of the
motion, we must specify how the body alters its
position with time; i.e. for every point on the
trgectory it must be stated at what time the
body is stuated there. These data must be
supplemented by such a definition of time that,
in virtue of this definition, these time-values can
be regarded essentially as magnitudes (results of
measurements) capable of observation. If we
take our stand on the ground d classicd me-

! That is, a curve along which the body moves.
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SPACE AND TIME 11

chanics, we can satisfy this requirement for our
illustration in the following manner. We imagine
two clocks of identicad construction; the man at
the rallway-cariage window is holding ane of
them, and the man on the footpath the other.
Ead of the observers determines the position on
his own reference-body occupied by the stone at
ead tick of the clock he is holding in his hand.
In this connedion we have not taken account of
the inaccuracgy involved by the finiteness of the
velocity of propagation o light. With this and
with a second difficulty prevailing here we shall
haveto ded in detail later.
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AV

THE GALILEIAN SYSTEM OF
CO-ORDINATES

Siswell known, the fundamental law of the
medhanics of Galilei-Newton, which is
known as the law of inertia, can be stated

thus: A body removed sufficiently far from other
bodies continues in a state of rest or of uniform
motion in a straight line. This law not only says
something about the motion of the bodies, but it
also indicates the reference-bodies or systems of
co-ordinates, permissble in medanics, which can
be used in medianicd description. The visible
fixed stars are bodies for which the law of inertia
certainly holds to a high degreeof approximation.
Now if we use a system of co-ordinates which is
rigidly attached to the eath, then, relative to
this system, every fixed star describes a circle of
immense radius in the curse of an astronomicd
day, aresult which is opposed to the statement of
the law of inertia. So that if we adhere to this law
we must refer these motions only to systems of co-
ordinates relative to which the fixed stars do not

move in a drcle. A system of co-ordinates of
12
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THE GALILEIAN SYSTEM 13

which the state of motion is such that the law of
inertia holds relative to it is cdled a “Galilean
system of co-ordinates.” The laws of the me
chanics of Gdlil eé-Newton can be regarded as vaid
only for a Galileian system of co-ordinates.
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Vv

THE PRINCIPLE OF RELATIVITY (IN THE
RESTRICTED SENSE)

N order to attain the greaest possible clea-
ness, let us return to our example of the rail-
way cariage supposed to be travelling

uniformly. We cdl its motion a uniform transla-
tion (“uniform” because it is of constant velocity
and dredion, “translation” because dthough
the cariage changes its position relative to the
embankment yet it does not rotate in so doing).
Let us imagine araven flying through the ar in
such a manner that its motion, as observed from
the embankment, is uniform andin a straight line,
If we were to observe the flying raven from the
moving railway cariage, we should find that the
motion d the raven would be one of different veloc-
ity and diredion, but that it would still be uni-
form and in a straight line. Expressed in an
abstract manner we may say: If a mass m is
moving uniformly in a straight line with respect
to a w-ordinate system K, then it will aso be
moving wiformly and in a straight line relative

to a seaond co-ordinate system K', provided that
14
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the latter is executing a uniform translatory
motion with respect to K. In accordance with the
discussion contained in the preceding section, it
foll ows that:

If K is a Galiledan co-ordinate system, then
every other co-ordinate system K' is a Galileian
one, when, in relation to K, it isin a condition of
uniform nmotion d trandation. Relative to K'
the medhanical laws of Galilei-Newton hold good
exactly as they do with respect to K.

We alvance astep farther in our generaisation
when we express the tenet thus. If, relative to
K, K' is a uniformly moving co-ordinate system
devoid of rotation, then natural phenomena run
their course with respea to K' aacording to
exactly the same general laws as with respect to
K. This statement is caled the principle of
relativity (in the restricted sense).

As long as one was convinced that all natural
phenomena were cpable of representation with
the help o classicd medanics, there was no reed
to doubt the validity of this principle of relativity.
But in view of the more recent development of
electrodynamics and optics it becane more and
more evident that classical mecdhanics affords an
insufficient foundation for the physicd description
of al natural phenomena. At this juncture the
question d the validity of the principle of relativity
became ripe for discussion, and it did nd appear
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impossible that the answer to this question might
be in the negative.

Nevertheless there ae two general fads which
at the outset speak very much in favour of the
validity of the principle of rdativity. Even
though classical mechanics does not supply us
with a sufficiently broad basis for the theoreticd
presentation of al physical phenomena, still we
must grant it a considerable measure of “truth,”
sinceit supplies us with the ad¢ua motions of the
heavenly bodies with a delicagy of detall little
short of wonderful. The principle of relativity
must therefore gply with great accuracy in the
domain of medhanics. But that a principle of
such broad generality should hdd with such
exactness in one domain of phenomena, and yet
should be invalid for another, isa priori not very
probable.

We now proceed to the second argument, to
which, moreover, we shall return later. If the
principle of reativity (in the restricted sense)
does not hold, then the Galileian co-ordinate
systems K, K', K", etc., which are moving uni-
formly relative to ead ather, will not be equivalent
for the description of natura phenomena. In
this case we should be mnstrained to believe that
natural laws are cpable of being formulated in a
particularly simple manner, and of course only on
condition that, from amongst all possible Galil elan


http://books.google.com/books?id=n8QKAAAAIAAJ&pg=RA1-PA16

THE PRINCIPLE OF RELATIVITY 17

co-ordinate systems, we should have dosen one
(Ko) of aparticular state of motion as our body of
reference We should then be justified (because
of its merits for the description of natural phe-
nomena) in caling this g/stem “absolutely at
rest,” and all other Galileian systems K “in mo-
tion.” If, for instance, our embankment were the
system K,, then our railway carriage would be a
system K, relative to which lesssimple laws would
hold than with resped to K,. This diminished
simplicity would be due to the fad that the cariage
K would be in motion (i.e. “redly”) with respect
to K,. In the general laws of nature which have
been formulated with reference to K, the magni-
tude and direction of the velocity of the arriage
would neaessarily play a part. We should exped,
for instance, that the note emitted by an argan-
pipe placed with its axis parallel to the direction of
travel would be different from that emitted if the
axis of the pipe were placed perpendicular to this
diredion. Now in virtue of its motion in an orbit
round the sun, our earth is comparable with arail-
way cariage travelling with a velocity of about
30 kilometres per second. If the principle of
relativity were nat valid we shoud therefore exped
that the direction of motion o the eath at any
moment would enter into the laws of nature, and
also that physica systems in their behaviour
would be dependent on the orientation in space
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with resped to the earth. For owing to the altera-
tionin direction of the velocity of rotation™ of the
eath in the course of a yea, the eath cannat be
at rest relative to the hypothetical system K,
throughout the whole yea. However, the most
caeful observations have never revealed such
anisotropic properties in terrestrial physicd space
I.e. aphysical non-equivalence of different direc
tions. Thisis a very powerful argument in favour
of the principle of relativity.

[ The word “rotation” was corredly changed to “revolution” in
later editions. — JM ]
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VI

THE THEOREM OF THE ADDITION OF
VELOCITIES EMPLOYED IN CLASS-
CAL MECHANICS

ET us suppose our old friend the railway

cariage to betravelling dong the rails with

a nstant velocity v, and that a man
traverses the length of the cariage in the diredion
of travel with a velocity w. How quickly, or, in
other words, with what velocity W does the man
advance relative to the embankment during the
process? The only possible answer seams to
result from the following consideration: If the
man were to stand still for a second, he would
advance relative to the embankment through a
distance v equal numericaly to the velocity of the
cariage. As a ansequence of his walking, how-
ever, he traverses an additional distance w relative
to the arriage, and hence dso relative to the
embankment, in this scond, the distancew being
numericaly equal to the velocity with which heis
walking. Thus in tota he covers the distance
W=v+w relative to the embankment in the
second considered. We shall see later that this

result, which expresses the theorem of the aldi-
19
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tion of velocities employed in classical mechanics,
cahnot be maintained; in other words, the law
that we have just written down does not hold in
redity. For the time being, however, we shal
assume its correctness.
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VI

THE APPARENT INCOMPATIBILITY OF THE
LAW OF PROPAGATION OF LIGHT WITH
THE PRINCIPLE OF RELATIVITY

HERE is hardly a simpler law in physics
than that according to which light is propa-
gated in empty space Every child at school

knows, or believes he knows, that this propagation
takes plae in straight lines with a velocity
C = 300,000 km./sec. At al events we know with
great exactness that this velocity is the same for
al colours, because if this were not the case, the
minimum of emission would not be observed
simultaneoudly for different colours during the
edipse of a fixed star by its dark neighbour. By
means of similar considerations based on observa-
tions of double stars, the Dutch astronamer De
Sitter was aso able to show that the velocity of
propagation o light cannot depend on the vel ocity
of motion of the body emitting the light. The
assumption that this velocity of propagation is
dependent on the diredion “in space’ is in itself
improbable.

In short, let us assume that the ssimple law of

the constancy of the velocity of light ¢ (in vaauum)
21
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isjustifiably believed by the dnild at schod. Who
would imagine that this ssimple law has plunged
the conscientioudy thoughtful physicist into the
greatest intellectual difficulties? Let us consider
how these difficulties arise.

Of course we must refer the process of the
propagation o light (and indeed every other
process) to a rigid reference-body (co-ordinate
system). As uch a system let us again choose
our embankment. We shall imagine the air above
it to have been removed. If aray of light be sent
along the enbankment, we see from the @ove
that the tip o the ray will be transmitted with
the velocity c relative to the anbankment. Now
let us suppose that our railway cariage is again
travelling along the raillway lines with the velocity
v, and that its diredion is the same & that of the
ray of light, but its velocity of course much less.
Let us inquire about the velocity of propagation
of the ray of light relative to the cariage. It is
obvious that we can here apply the consideration
of the previous ction, sincethe ray of light plays
the part of the man walking along relatively to
the carriage. The velocity W of the man relative
to the embankment is here replaceal by the velocity
of light relative to the embankment. w is the
required velocity of light with respect to the
cariage, and we have

W=C—V.
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The velocity of propagation d a ray of light
relative to the carriage thus comes out smaller
than c.

But this result comes into conflict with the
principle of relativity set forth in Sedion V. For,
like every other general law of nature, the law of
the transmission d light in vacuo must, according
to the principle of relativity, be the same for the
rallway cariage as reference-body as when the
raills are the body of reference But, from our
above mnsideration, this would appear to be im-
possible. If every ray of light is propagated rela-
tive to the embankment with the velocity c, then
for this reason it would appear that another law
of propagation of light must necessarily hold with
respect to the carriage — aresult contradictory to
the principle of relativity.

In view of this dilemma there gpears to be
nothing else for it than to abandon ether the
principle of relativity or the simple law of the
propagation of light in vacuo. Those of you who
have caefully followed the preceding discussion
are dmost sure to exped that we should retain
the principle of relativity, which appeals so con-
vincingly to the intellect because it is so natural
and smple. The law of the propagation of light
in vacuo would then have to be replaced by a
more complicated law conformable to the principle
of relativity. The development of theoretica
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physics fiows, however, that we cainot pursue
this course. The epoch-making theoreticd in-
vestigations of H. A. Lorentz on the electrody-
namicad and optical phenomena nnected with
moving bodes show that experiencein thisdomain
leads conclusively to a theory of electromagnetic
phenomena, of which the law of the constancy of
the velocity of light in vacuo is a necessary conse-
guence. Prominent theoretical physicists were
therefore more inclined to regject the principle of
relativity, in spite of the fact that no empirica
data had been found which were contradictory to
this principle.

At this juncture the theory of relativity entered
the aena. Asaresult of an analysis of the physicd
conceptions of time and space, it became evident
that in reality there is not the least incompatibility
between the principle of relativity and the law of
propagation of light, and that by systematicaly
holding fast to both these laws a logicdly rigid
theory could be arived at. This theory has been
cdled the speaal theory of relativity to dstinguish
it from the extended theory, with which we shall
deal later. In the foll owing pages we shall present
the fundamental ideas of the specia theory of
relativity.
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VI
ON THE IDEA OF TIME IN PHYSICS

IGHTNING has gruck the rails on our rail -
L way embankment at two places A and B

far distant from ead aher. | make the
additional assertion that these two lightning
flashes occurred simultaneoudly. If now | ask
you wWhether there is $nse in this statement, you
will answer my question with a decided “Yes.”
But if | now approach you with the request to
explain to me the sense of the statement more
precisely, you find after some mnsideration that
the answer to this question is not so easy as it
appeas at first sight.

After some time perhaps the foll owing answer
would occur to you: “The significance of the
statement is clea in itself and needs no further
explanation; of course it would require some @n-
sideration if | were to be commisgoned to deter-
mine by observations whether in the actual case
the two events took placesimultaneously or not.”
| canna be satisfied with this answer for the foll ow-
ing reason. Suppasing that as aresult of ingenious

considerations an able meteorologist were to dis-
25
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cover that the lightning must always drike the
places A and B simultaneously, then we should be
facedl with the task of testing whether or not this
theoretical result isin acmrdancewith the redity.
We encourter the same difficulty with all physicd
statements in which the conception “simultane-
ous’ plays a part. The @ncept does not exist
for the physicist until he has the possibility of
discovering whether or not it is fulfilled in an
adua case. We thus require a definition of
simultaneity such that this definition supplies us
with the method by means of which, in the present
case, he can dedade by experiment whether or not
both the lightning strokes occurred simultane-
oudly. Aslong as this requirement is not satisfied,
| alow myself to be deceived as a physicist (and
of course the same apliesif | am nat aphysicist),
when | imagine that | am able to attach ameaning
to the statement of simultaneity. (I would ask
the reader not to procea farther until he is fully
convinced on this paint.)

After thinking the matter over for some time
you then dfer the following suggestion with which
to test simultaneity. By measuring aong the
rails, the connecting line AB should be measured
up and an observer placed a the mid-point M
of the distance AB. This observer should be
supplied with an arrangement (e.g. two mirrors
inclined at 90°) which allows him visualy to ob-
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serve both places A and B at the same time. If
the observer perceives the two flashes of lightning
at the same time, then they are simultaneous.

| am very pleased with this suggestion, but for
all that | cannot regard the matter as quite settled,
because | feel constrained to raise the following
objection: “Your definition would certainly be
right, if | only knew that the light by means of
which the observer a M perceives the lightning
flashes travels along the length A — M with the
same velocity as along the length B — M.
But an examination of this supposition would anly
be possble if we dready had at our disposal the
means of measuring time. It would thus appear
as though we were moving herein alogicd circle.”

After further consideration you cast a somewhat
disdainful glance @ me— and rightly so— and
you ceclare: “I maintain my previous definition
nevertheless because in redity it assumes ab-
solutely nothing about light. There is only one
demand to be made of the definition of simulta-
neity, namely, that in every red case it must
supply us with an empirical decision as to whether
or not the conception that has to be defined is
fulfilled. That my definition satisfies this demand
Is indisputable. That light requires the same
time to traverse the path A — M as for the
path B — M is in redity neither a supposition
nor a hypothesis about the physicd nature of light,
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but a stipulation which | can make of my own
freewill in order to arrive a a definition o
simultaneity.”

It is clear that this definition can be used to
give an exact meaning not only to two events, but
to as many events as we cae to choose, and in-
dependently of the positions of the scenes of the
events with respect to the body of reference’
(here the railway embankment). We ae thus led
also to a definition of “time” in plysics. For
this purpose we suppose that clocks of identical
construction are placed at the points A, B and C
of the railway line (co-ordinate system), and that
they are set in such a manner that the pasitions
of their pointers are smultaneously (in the above
sense) the same. Under these wnditions we
understand by the “time” of an event the reading
(position of the hands) of that one of these docks
which is in the immediate vicinity (in space of
the event. In this manner a time-value is as-
ciated with every event which is essntidly cgoable
of observation.

This dipulation contains a further physicd

' We suppose further that, when three events A, B and C take
placein different places in such a manner that, if A is simultaneous
with B, and B is smultaneous with C (simultaneous in the sense of
the &ove definition), then the aiterion for the simultaneity of the
pair of events A, C is also satisfied. This asaumption is a physicd
hypothesis about the law of propagation of light; it must certainly
be fulfilled if we ae to maintain the law of the cnstancy of the
velocity of light in vacuo.
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hypothesis, the validity of which will hardly be
doubted without empirical evidence to the con-
trary. It has been assumed that all these clocks
go at the same rateif they are of identicd construc-
tion. Stated more exactly: When two clocks
arranged at rest in different places of a reference-
body are set in such a manner that a particular
position of the pointers of the one dock is smul-
taneous (in the dove sense) with the same position
of the pointers of the other clock, then identical
“settings’ are dways simultaneous (in the sense
of the above definition).
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IX
THE RELATIVITY OF SIMULT ANEITY

P to now our considerations have been re-
ferred to a particular body of reference,
which we have styled a “raill way embank-

ment.” We suppose avery long train travelling
along the rails with the constant velocity v and
in the direction indicated in Fig. 1. People
travelling in this train will with advantage use
the train as a rigid reference-body (co-ordinate
system); they regard all events in reference to

v M."——* . v, ./ Train
A 1;1 é Embankment
FiG. 1.

the train. Then every event which takes place
along the line dso takes place d& a particular
point of the train. Also the definition of simul-
taneity can be given relative to the train in exactly
the same way as with respect to the ambankment.
As anatura consequence, however, the following
guestion arises.

Are two events (e.g. the two strokes of lightning

A and B) which are simultaneous with referenceto
30
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the railway ambankment dso smultaneous rdativdy
to the train? We shal show diredly that the
answer must be in the negative.

When we say that the lightning strokes A and B
are simultaneous with resped to the embankment,
we mean: the rays of light emitted at the places
A and B, where the lightning occurs, meet each
other at the mid-point M of the length A — B
of the ambankment. But the events A and B
also correspond to positions A and B on the
train. Let M' be the mid-point of the distance
A — B on the travelling train. Just when the
flashes™* of lightning acaur, this point M' naturally
coincides with the paint M, but it moves towards
the right in the diagram with the velocity v of
the train. If an observer sitting in the position
M' in the train did not possess this velocity, then
he would remain permanently at M, and the light
rays emitted by the flashes of lightning A and B
would reach hhm simultaneoudly, i.e. they would
med just where he is stuated. Now in redity
(considered with reference to the railway embank-
ment) he is hastening towards the beam of light
coming from B, whilst heisriding on ahead o the
beam of light coming from A. Hence the observer
will seethe bean of light emitted from B ealier
than he will see that emitted from A. Observers
who take the railway train as their reference-body

! Asjudged from the embankment.
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must therefore come to the conclusion that the
lightning flash B took placeearlier than the light-
ning flash A. We thus arrive a the important
result:

Events which are simultaneous with reference
to the ambankment are not simultaneous with
respect to the train, and vice \ersa (relativity of
simultaneity). Every reference-body (co-ordinate
system) has its own particular time; unless we
are told the reference-body to which the statement
of time refers, there is no meaning in a statement
of the time of an event.

Now before the alvent of the theory of relativity
it had aways tacitly been assumed in physics
that the statement of time had an absolute
significance, i.e. that it is independent of the state
of motion of the body of reference But we have
just seen that this assumption is incompatible
with the most natura definition of simultaneity;
If we discard this assumption, then the conflict
between the law of the propagation of light in
vacuo and the principle of relativity (developed
in Section VII) disappeas.

We were led to that conflict by the considera-
tions of Sedion VI, which are now no longer
tenable. In that sedion we concluded that the
man in the carriage, who traverses the distance
w per second relative to the carriage, traverses the
same distance also with respect to the embank-
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ment in each second of time. But, aacording to
the foregoing considerations, the time required by
a particular occurrence with resped to the arriage
must not be considered equal to the duration of
the same occurrence & judged from the ambank-
ment (as reference-body). Hence it cannat be
contended that the man in walking travels the
distance w relative to the railway line in a time
which is equal to one second as judged from the
embankment.

Moreover, the considerations of Sedion VI are
based onyet a second assumption, which, in the
light of a strict consideration, appeas to be
arbitrary, athough it was always tadtly made
even before the introduction of the theory of
relativity.


http://books.google.com/books?id=n8QKAAAAIAAJ&pg=RA1-PA33

X

ON THE RELATIVITY OF THE CONCEPTION
OF DISTANCE

ET us consider two particular points on the
train! travelling along the embankment
with the velocity v, and inquire & to their

distance gart. We drealy know that it is neces-
sary to have abody of reference for the measure-
ment of a distance, with respect to which body
the distance can be measured up. It is the simplest
plan to use the train itself as the reference-body
(co-ordinate system). An olserver in the train
measures the interval by marking off his measur-
ing-rod in a straight line (e.g. aong the floor of
the cariage) as many times as is neessry to
take him from the one marked point to the other.
Then the number which tells us how often the
rod hesto be laid down isthe required distance

It is a different matter when the distance has
to be judged from the railway line. Here the
following method suggests itself. If we cdl A
and B' the two points on the train whose distance
apart is required, then both of these points are

! e.g. the middle of the first and of the hundredth carriage.

34
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moving with the velocity v along the anbankment.
In the first place we require to determine the
points A and B of the ambankment which are
just being pessed by the two points A" and B'
at a particular time t — judged from the embank-
ment. These points A and B of the embankment
can be determined by applying the definition o
time given in Sedion VIII. The distance between
these paints A and B is then measured by repeated
application of the measuring-rod along the em-
bankment.

A priori it is by no means certain that this last
measurement will supply us with the same result
as the first. Thus the length o the train as
measured from the embankment may be different
from that obtained by measuring in the train
itself. This circumstance leads us to a second
objection which must be raised against the ap-
parently obvious consideration of Sedion VI.
Namely, if the man in the crriage covers the
distancew in a unit of time— measured from the
train, — then this distance— as measured from the
embankment — is not necessarily also equal to w.
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Xl
THE LORENTZ TRANSFORMATION

HE results of the last three sections ow
that the apparent incompatibility of the
law of propagation d light with the principle

of relativity (Section VII) has been derived by
means of a ansideration which borrowed two
unjustifiable hypotheses from classcd mechanics;
these ae asfollows:

(1) The time-interval (time) between two events
Is independent of the condition of motion
of the body of reference

(2) The space-interva (distance) between two
points of a rigid body is independent of
the condition of motion of the body of
reference

If we drop these hypotheses, then the dilemma
of Section VII disappeas, because the theorem of
the aldition of velocities derived in Sedion VI
becomes invalid. The possibility presents itself
that the law of the propagation of light in vacuo
may be compatible with the principle of rdativity,
and the question arises. How have we to modify

the onsderations of Sedion VI in order to remove
36
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the gparent disagreament between these two
fundamental results of experience? This question
leads to a general one. In the discusson of
Sedion VI we have to do with plages and times
relative both to the train and to the embankment.
How are we to find the place and time of an event
in relation to the train, when we know the place
and time of the event with respect to the railway
embankment? |Is there athinkable answer to this
guestion of such a nature that the law of transmis-
sion of light in vacuo does not contradict the
principle of relativity? In ather words: Can we
conceive of arelation between place and time of
the individual events relative to both reference-
bodies, such that every ray of light possesses the
velocity of transmission c relative to the anbank-
ment and relative to the train? This question
leads to a quite definite positive answer, and to a
perfedly definite transformation law for the space
time magnitudes of an event when changing over
from one body of reference to ancther.

Before we dedl with this, we shall introduce the
following incidental consideration. Up to the
present we have only considered events taking
place dong the anbankment, which had mathe-
maticall y to assume the function of a straight line.
In the manner indicated in Sedion Il we can
Imagine this reference-body supplemented later-
aly and in a vertical direction by means of a
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framework of rods, so that an event which takes
place anywhere can be localised with reference
to this framework. Similarly, we ca imagine
the train travelling with the velocity v to be
continued across the whole of space so that every
event, no matter how far off it may be, could also
be locdised with resped to the second framework.
Without committing any fundamental error, we
can disregard the fact that in readlity these frame-
works would continuall y interfere with each other,
owing to the impenetrability of solid bodes. In
every such framework we imagine three surfaces
perpendicular to each other marked out, and
designated as “co-ordinate planes’ (“co-ordinate
system”). A co-ordinate system K then corre-
sponds to the embankment, and a @-ordinate
system K' to the train. An event, wherever it
may have taken place, would be fixed in space
with respect to K by the three perpendiculars
X, ¥, Z on the co-ordinate planes, and with regard
to time by a time-value t. Reative to K', the
same event would be fixed in respect of spaceand
time by corresponding values X, y', Z, t', which
of course ae not identical with x, y, z t. It has
already been set forth in detail how these magni-
tudes are to be regarded as results of physical
measurements.

Obviously our problem can be exactly formu-
lated in the following manner. What are the
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values X, Y, Z, t' of an event with respect to K',
when the magnitudes x, v, z, t, of the same event
with respect to K are given? The relations must
be so chosen that the law '

of the transmission of § . A

light in vacuo is satisfied

for one and the same ray y y

of light (and d course for e

every ray) with respect to Y x'

K and K'. For the rela- "'FI *
G. 2.

tive orientation in space
of the @m-ordinate systems indicaed in the diagram
(Fig. 2), this problem is solved by means of the
equations:

This g/stem of equations is known as the “Lorentz
transformation.” *

If in placeof the law of transmisson of light we
had taken as our basis the tacit assumptions of
the older medhanics as to the @solute charader

LA simple derivation of the Lorentz transformation is given in
Appendix I.
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of times and lengths, then instead dof the above we
should have obtained the following equations:

X'=x—-vt
Y'l:y
z'=2

t =t.
This g/stem of equations is often termed the
“Galil e transformation.” The Galilel transforma-
tion can be obtained from the Lorentz trans
formation by substituting an infinitely large value
for the velocity of light ¢ in the latter trans
formation.

Aided by the following illustration, we can
readily see that, in accordance with the Lorentz
transformation, the law of the transmission of
light in vacuo is stisfied baoth for the reference-
body K and for the reference-body K'. A light-
signa is ent along the positive x-axis, and this
light-stimulus advances in acacordance with the
equation

X =ct,
I.e. with the velocity c. According to the equations
of the Lorentz transformation, this smple rela-
tion between x and t involves a relation between
X and t'. In point of fad, if we substitute for
X the value ct in the first and fourth equations of
the Lorentz transformation, we obtain:
,_ (c=wit
X = 2
c?

1-
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(1—V)t
t=——-C2
VZ
Vit

from which, by division, the expression
X =ct

immediately follows. If referred to the system K',
the propagation of light takes place according to
this equation. We thus see that the velocity of
transmission relative to the reference-body K' is
also equal to c. The same result is obtained for
rays of light advancing in any other direction
whatsoever. Of course this is not surprising,
since the equations of the Lorentz transformation
were derived conformably to this point of view.
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Xl

THE BEHAVIOUR OF MEASURING-RODS AND
CLOCKS IN MOTION

PLACE a metre-rod in the x'-axis of K' in

such a manner that one end (the beginning)

coincides with the point X' =0, whilst the
other end (the end of the rod) coincides with the
point X =1. What is the length of the metre-
rod relatively to the system K? In order to learn
this, we need only ask where the beginning of the
rod and the end d the rod lie with respect to K
at a particular time t of the system K. By means
of the first equation of the Lorentz transformation
the values of these two points at the time t=0
can be shown to be

X (beginningof rod) = 0L/~ c2
X (endof rod) = 14/1- c2’
2
the distance between the points being 1—\0’—2.

But the metre-rod is moving with the velocity v

relative to K. It therefore follows that the length

of arigid metre-rod movingin the direction d its

length with a velocity vis /1-vz/c2 of a metre.

Therigid rod is thus shorter when in motion than
42
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when at rest, and the more quickly it is moving,
the shorter is the rod. For the velocity v=c
we shoud have J1-v?/c2 =0, and for dtill

greater velocities the square-root becomes im-
aginary. From this we @nclude that in the
theory of relativity the velocity ¢ plays the part
of alimiting v ocity, which can reither be readed
nor exceeded by any red body.

Of course this feature of the velocity ¢ as a
limiting velocity also clealy follows from the
equations of the Lorentz transformation, for these
become meaningless if we doose values of v
greater than c.

If, on the contrary, we had considered a metre-
rod at rest in the x-axis with respect to K, then we
should have found that the length of the rod as
judged from K' would have been .,/ 1-v?/c? ; this
IS quite in accordance with the principle of rela-
tivity which forms the basis of our considerations.

Apriori itisquite dear that we must be aleto
lean something about the physical behaviour of
measuring-rods and clocks from the eguations of
transformation, for the magnitudes x, vy, z, t, are
nothing more nor less than the results of measure-
ments obtainable by means of measuring-rods and
clocks. If we had based our considerations on the
Galilel transformation we should na have ob-
tained a contraction of the rod as a @mnsequence
of its motion.
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Let us now consider a seconds-clock which is
permanently situated at the origin (X' =0) of K'.
t'=0 and t'=1 are two successive ticks of this
clock. The first and fourth equations of the
Lorentz transformation give for these two ticks:

t=0
and

As judged from K, the dock is moving with
the velocity v; as judged from this reference-body,
the time which el apses between two strokes of the

clock is not one second, but seoonds, i.e.

V2

CZ

a somewhat larger time. As a @nsequence of its
motion the clock goes more slowly than when at
rest. Here dso the velocity ¢ plays the part of
an unattainable limiting vl ocity.

1-
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X1

THEOREM OF THE ADDITION OF VELOCITIES.
THE EXPERIMENT OF FIZEAU

OW in practice we can move clocks and
measuring-rods only with velocities that
are small compared with the velocity of

light; hence we shall hardly be ale to compare
the results of the previous sction directly with
the redlity. But, on the other hand, these results
must strike you as being very singular, and for
that reason | shall now draw another conclusion
from the theory, one which can easlly be derived
from the foregoing considerations, and which has
been most elegantly confirmed by experiment.

In Section VI we derived the theorem of the
addition of velocities in one diredion in the form
which also results from the hypatheses of classica
medhanics. This theorem can aso be deduced
readily from the Galile transformation (Sedion
X1). In place of the man waking inside the
cariage, we introduce apoint moving relatively
to the co-ordinate system K' in aacordance with
the equation

X =wt',
By means of the first and fourth equations of the
45
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Gadlilel transformation we @n express X' and t'
in terms of X and t, and we then obtain
X=(v+wt.

This equation expresses nothing else than the law
of motion d the point with referenceto the system
K (of the man with reference to the embankment).
We denote this velocity by the symbal W, and we
then dbtain, asin Section VI,

W=v+w . . ... ... (A).

But we @n carry out this consideration just as
well on the basis of the theory of relativity. In
the equation

X =wt'
we must then expressx' and t' in terms of x and t,
making use of the first and fourth equations of the
Lorentz transformation. Instead of the equation
(A) we then obtain the equation

V+Ww
W = o (B),

C2
which corresponds to the theorem of addition for
velocities in one direction according to the theory
of relativity. The question row arises as to which
of these two theorems is the better in accord with
experience. On this point we ae enlightened by
a most important experiment which the bril liant
physicist Fizeau performed more than haf a
century ago, and which has been repeated since
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then by some of the best experimental physicists,
so that there can be no doubt about its result.
The experiment is concerned with the following
question. Light travels in a motionless liquid
with a particular velocity w. How quickly does
it travel in the direction d the arow inthetube T
(seethe acompanying diagram, Fig. 3) when the
liquid above mentioned is flowing through the
tube with aveocity v?

In accordance with the principle of relativity
we shall certainly have to take for granted that
the propagation of light always takes place with
the same velocity w with respect to the liquid,
whether the latter is in motion with reference to
other bodies or not. The velocity of light relative
to the liquid and the velocity of the latter relative
to the tube ae thus known, and we require the
velocity of light relative to the tube.

It is clea that we have the problem of Sedion
VI again before us. The tube plays the part of

/T

Fic. 3

the rallway embankment or of the @-ordinate
system K, the liquid plays the part of the cariage
or of the co-ordinate system K', and finaly, the
light plays the part of the man walking along the
cariage, or of the moving point in the present
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section. If we denote the velocity of the light
relative to the tube by W, then this is given by
the equation (A) or (B), aacording as the Galilei
transformation o the Lorentz transformation
corresponds to the facts. Experiment * decides in
favour of equation (B) derived from the theory of
relativity, and the areament is, indeed, very
exact. According to recent and most excellent
measurements by Zeeman, the influence of the
velocity of flow v on the propagation of light
Is represented by formula (B) to within one
per cent.

Nevertheless we must now draw attention to
the fact that a theory of this phenomenon was
given by H. A. Lorentz long kefore the statement
of the theory of relativity. This theory was of a
purely eledrodynamicd nature, and was obtained
by the use of particular hypotheses as to the
electromagnetic structure of matter. This circum-
stance, however, does not in the least diminish
the conclusivenessof the experiment as a aucial
test in favour of the theory of reativity, for the

lFizeaifound W = w+v (1 _n_lz) ,where n = % is the index

of refradion of the liquid. On the other hand, owing to the small-

ness of \C’—‘Q’ as compared with 1, we can replace(B) in the first place

by W = (w+ v)( - MZ) , Or to the same order of approximation by

c

W+ vV (1 - %) , which agrees with Fizeau’ sresult.
n
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eledrodynamics of Maxwell-Lorentz, on which the
original theory was based, in noway opposes the
theory of relativity. Rather has the latter been
developed from eedrodynamics as an astoundngy
simple combination and generalisation of the
hypotheses, formerly independent of each other,
on which e ectrodynamics was built.
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X1V

THE HEURISTIC VALUE OF THE THEORY OF
RELATIVITY

UR train of thought in the foregoing pages
can be goitomised in the foll owing manner.
Experience has led to the conviction that,

on the one hand, the principle of relativity holds
true, and that on the other hand the velocity of
transmisson d light in vacuo has to be mnsidered
equal to a constant c. By uniting these two postu-
lates we obtained the law of transformation for
the rectangular co-ordinates X, y, z and the time
t of the events which constitute the processes of
nature. In this connection we did not obtain
the Galilel transformation, but, differing from
classical medhanics, the Lorentz transfor mation.

The law of transmisson d light, the aceptance
of which is justified by our actual knowledge,
played an important part in this process of thought.
Oncein possession of the Lorentz transformation,
however, we can combine this with the principle
of relativity, and sum up the theory thus:

Every genera law of nature must be so con-
stituted that it is transformed into a law of

exactly the same form when, instead of the space-
50
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time variables x, y, z, t of the origina co-ordinate
system K, we introduce new space-time variables
X, VY, Z, t of aco-ordinate system K'. In this
connection the relation ketween the ordinary and
the aacented magnitudes is given by the Lorentz
transformation. Or, in brief: General laws of
nature are @-variant with resped to Lorentz
transformations.

This is a definite mathematicd condition that
the theory of relativity demands of a natural law,
andin virtue of this, the theory becomes a valuable
heuristic aid in the seach for genera laws of
nature. If a genera law of nature were to be found
which did not satisfy this condition, then at least
one of the two fundamental assumptions of the
theory would have been disproved. Let us now
examine what genera results the latter theory
has hitherto evinced.
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XV
GENERAL RESULTS OF THE THEORY

T isclea from our previous considerations that
I the (special) theory of relativity has grown

out of eledrodynamics and optics. In these
fields it has not appreciably altered the predictions
of theory, but it has considerably simplified the
theoretical structure, i.e. the derivation of laws,
and — what isincomparably more important — it
has considerably reduced the number of inde-
pendent hypotheses forming the basis of theory.
The special theory of relativity has rendered the
Maxwell-Lorentz theory so plausible, that the
latter would have been generally accepted by
physicists even if experiment had decided less
unequivocally initsfavour.

Classical medhanics required to be modified
before it could come into line with the demands
of the special theory of relativity. For the main
part, however, this modification affects only the
laws for rapid motions, in which the velocities of
matter v are not very small as compared with the
velocity of light. We have experience of such

rapid motions only in the case of eectrons and
52
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ions, for other motions the variations from the
laws of classical mechanics are too small to make
themselves evident in practice We shal not
consider the motion of stars until we come to
speak of the general theory of reativity. In
acordance with the theory of relativity the
kinetic energy of a material point of massmisno
longer given by the well-known expression
V2

m?,

but by the expression
mc2 o«

v2
Vi

This expression approades infinity as the velocity
v approaches the velocity of light c. The velocity
must therefore always remain less than ¢, however
great may be the energies used to produce the
acceeration. If we develop the epression for
the kinetic energy in the form of a series, we
obtain

4
+3mV 4
8 c?

When \é_ is small compared with unity, the third

2
mec2 + mY¥=
2

of these terms is always small in comparison with
the seaond, which last is done considered in class-
cd medanics. Thefirst term mc does not contain

the velocity, and requires no consideration if we

., me&
[ 1_ﬁ—J.M.]

CZ
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are only dealing with the question as to how the
energy of a point-mass depends on the velocity.
We shall speak of its essential significance later.

The most important result of a general charader
to which the specid theory of relativity has led is
concerned with the conception of mass Before
the advent of reativity, physics recognised two
conservation laws of fundamental importance,
namely, the law of the wnservation d energy
and the law of the mnservation of mass these
two fundamental laws appeared to be quite in-
dependent of each aher. By means of the
theory of relativity they have been united into one
law. We shall now briefly consider how this
unification came aout, and what meaning is to
be attached to it.

The principle of relativity requires that the law
of the conservation of energy should had not
only with reference to a co-ordinate system K,
but also with respect to every co-ordinate system
K' which isin a state of uniform motion d tranda-
tion relative to K, or, briefly, relative to every
“Galilelan” system of co-ordinates. In contrast
to classica medanics, the Lorentz transformation
Is the deciding factor in the transition from one
such system to another.

By means of comparatively simple considera-
tions we ae led to draw the following conclusion
from these premises, in conjunction with the
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fundamental equations of the dectrodynamics of
Maxwell: A body moving with the velocity v,
which absorbs® an amourt of energy E, in the
form of radiation without suffering an alteration
in velocity in the process, has, as a consequence,
its energy increased by an amourt

Eo

V2
V17

In consideration of the expresson given above
for the kinetic energy of the body, the required
energy of the body comes out to be

(%)

V2
T

1

Thus the body has the same energy as a body
of mass (m+%> moving with the velocity v.

Hence we can say: If a body takes up an amount
of energy E,, then itsinertid massincreases by an

amount C_Eg; the inertial mass of a body is not a
constant, but varies acamrding to the change in
the energy of the body. The inertial mass of a
system of bodes can even be regarded as a measure
1 E, isthe energy taken up, as judged from a m-ordinate system
moving with the body.
« E,
[ 2
V

S

—JIM]
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of its energy. The law of the conservation of the
massof a system becomes identical with the law
of the conservation of energy, and is only valid
provided that the system neither takes up nor
sends out energy. Writing the expression for the
energy in theform

mc + E,

vz
Vi e

we see that the term mc?, which has hitherto

attracted our attention, is nothing else than the
energy possessed by the body * before it absorbed
the energy E..

A dired comparison o this relation with experi-
ment is not possible & the present time, owing to
the fad that the dhangesin energy E, to which we
can subjed a system are not large enough to make
themselves perceptible a a change in the inertial
&
with the mass m, which was present before the
dteration of the energy. It is owing to this circum-
stance that classicd medianics was able to es-
tablish successfully the conservation d massas a
law of independent validity.

Let me ald a final remark of a fundamental
nature. The success of the Faraday-Maxwell

! Asjudged from a co-ordinate system moving with the body.

massof the system. Istoo small in comparison
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interpretation of electromagnetic action at a dis-
tance resulted in physicists becoming convinced
that there ae no such things as instantaneous
adions at a distance (not involving an inter-
mediary medium) of the type of Newton's law of
gravitation. According to the theory of relativity,
adion at a distance with the velocity of light
always takes the place of instantaneous adion at
a distance or of action at a distance with an in-
finite velocity of transmisson. This is connected
with the fact that the velocity ¢ plays a funda
mental réle in this theory. In Part Il we shall see
in what way this result becomes modified in the
genera theory of relativity.
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XVI

EXPERIENCE AND THE SPECIAL THEORY
OF RELATIVITY

O what extent is the specia theory of rela
T tivity supported by experience? This ques-
tion is not easily answered for the reason
already mentioned in connection with the funda-
mental experiment of Fizeau. The special theory
of relativity has crystallised out from the Maxwell -
Lorentz theory of electromagnetic phenomena.
Thus all facts of experience which support the
electromagnetic theory also support the theory of
relativity. As being of particular importance, |
mention here the fact that the theory of relativity
enables us to predict the effects produced on the
light reaching us from the fixed stars. These
results are obtained in an excealingly simple
manner, and the eff ects indicated, which are due
to the relative motion of the eath with reference
to those fixed stars, are found to be in acord
with experience We refer to the yealy move-
ment of the gparent position of the fixed stars
resulting from the motion of the eath round the

sun (aberration), and to the influence of the radial
58
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comporents of the relative motions of the fixed
stars with resped to the eath on the alour of
the light reaching us from them. The latter effect
manifests itself in a dight displacement of the
gpectral lines of the light transmitted to us from
afixed star, as compared with the position of the
same spectral lines when they are produced by a
terrestrial source of light (Doppler principle).
The eperimental arguments in favour of the
Maxwell-Lorentz theory, which are & the same
time aguments in favour of the theory of rela
tivity, are too numerous to be set forth here. In
redity they limit the theoretical possibilities to
such an extent, that no other theory than that of
Maxwell and Lorentz has been able to hold its
own when tested by experience.

But there are two classes of experimental fads
hitherto obtained which can be represented in the
Maxwell-Lorentz theory only by the introduction
of an auxiliary hypothesis, which in itself —i.e.
without making use of the theory of relativity —
appeas extraneous.

It is known that cathode rays and the so-called
B-rays emitted by radioactive substances consist
of negatively eledrified particles (electrons) of
very small inertia and large velocity. By examin-
ing the deflection o these rays under the influence
of eledric and magnetic fields, we @an study the
law of motion d these particles very exadly.
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In the theoretical treatment of these dectrons,
we ae faced with the difficulty that eectro-
dynamic theory of itself is unable to give an ac-
count of their nature. For since electrical masss
of one sign repel each other, the negative eledrica
masses constituting the dedron would necessarily
be scattered under the influence of their mutua
repulsions, unlessthere ae forces of anather kind
operating between them, the nature of which has
hitherto remained dbscure to us* If we now
assume that the relative distances between the
electrica masses constituting the dectron remain
unchanged duing the motion of the dectron
(rigid connection in the sense of classicd me-
chanics), we arive & a law of motion of the
electron which does not agree with experience
Guided by purely formal points of view, H. A.
Lorentz was the first to introduce the hypothesis
that the particles constituting the electron ex-
perience acontraction in the diredion d motion
in consequence of that motion, the anount of this
contraction being proportional to the expression

N 1—V—z . This hypothesis, which is not justifiable
C

by any electrodynamicd fads, supplies us then
with that particular law of motion which has been
confirmed with great precisionin recent yeas.

1 The general theory of relativity renders it likely that the elec
trica masses of an eledron are held together by gravitational forces.

2
[ 1:‘C’—2 —IM]
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The theory of relativity leads to the same law
of motion, without requiring any specia hypothe-
Sis whatsoever as to the structure and the be-
haviour of the electron. We arived a a similar
conclusion in Section XIII in connection with the
experiment of Fizeau, the result of which is fore-
told by the theory of relativity without the ne-
cessty of drawing on hypotheses as to the physicd
nature of theliquid.

The second class of fads to which we have
alluded has reference to the question whether or
not the motion of the eath in space @n be made
perceptible in terrestrial experiments. We have
already remarked in Sedion V that all attempts
of this nature led to a negative result. Before
the theory of relativity was put forward, it was
difficult to become rewmnciled to this negative
result, for reasons now to be discussed. The in-
herited prejudices about time and spacedid not
alow any doult to arise & to the prime importance
of the Galilei transformation for changing over
from one body of reference to another. Now
assuming that the Maxwell-Lorentz equations
hold for a reference-body K, we then find that
they do not hold for a reference-body K' moving
uniformly with respect to K, if we assume that
the relations of the Galilelan transformation
exist between the co-ordinates of K and K'. It
thus appeas that of all Galilean co-ordinate
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systems one (K) corresponding to a particular
state of motion is physicdly unique. This result
was interpreted physically by regarding K as at
rest with respect to a hypaothetical agher of space.
On the other hand, all co-ordinate systems K
moving relatively to K were to be regarded as in
motion with respect to the agher. To this motion
of K' against the agher (“agher-drift” relative to
K) were asigned the more complicated laws
which were supposed to hold relative to K'.
Strictly speaking, such an agher-drift ought also
to be assumed relative to the erth, and for a
long time the dforts of physicists were devoted
to attempts to detect the existence of an agher-
drift at the eath’s surface

In one of the most notable of these attempts
Michelson devised a method which appeas as
though it must be decisive. Imagine two mirrors
so arranged on a rigid body that the reflecting
surfaces face eah other. A ray of light requires
a perfedly definite time T to passfrom one mirror
to the other and badk again, if the whoe system
be at rest with respect to the agher. It is found
by cdculation, however, that a dightly different
time T' is required for this process, if the body,
together with the mirrors, be moving relatively
to the agher. And yet ancther paint: it is sown
by cdculation that for a given velocity v with
reference to the agher, this time T' is different
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when the body is moving perpendicularly to the
planes of the mirrors from that resulting when
the motion is parald to these planes. Although
the estimated diff erence between these two times
Is exceedingly small, Michelson and Morley
performed an experiment involving interference
in which this diff erence should have been clealy
detedable. But the experiment gave a negative
result — a fact very perplexing to physicists.
Lorentz and FitzGerald rescued the theory from
this difficulty by assuming that the motion d
the body relative to the agher produces a contrac-
tion of the body in the direction of motion, the
amount of contraction leing just sufficient to
compensate for the difference in time mentioned
above. Comparison with the discussion in Sedion
X1l shows that from the standpoint also of the
theory of relativity this olution of the difficulty
was the right one. But on the basis of the theory
of relativity the method of interpretation is in-
comparably more satisfadory. According to this
theory there is no such thing as a “specialy
favoured” (unique) co-ordinate system to occasion
the introduction d the agher-idea and hence
there an be no agher-drift, nor any experiment
with which to demonstrate it. Here the contrac-
tion of moving bodies follows from the two fun-
damental principles of the theory without the
introduction of particular hypotheses; and as the
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prime fador involved in this contradion we find,
not the motion in itself, to which we canot
attach any meaning, but the motion with respect
to the body of reference chosen in the particular
case in pont. Thus for a co-ordinate system
moving with the earth the mirror system of
Michelson and Morley is not shortened, but it is
shortened for a @-ordinate system which is at
rest relatively to the sun.
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XVII
MINKOWSKI'S FOUR-DIMENSIONAL SPACE

HE non-mathematician is sized by a mys-
terious shuddering when he hears of “four-
dimensiona” things, by afeding not unlike

that awakened by thoughts of the occult. And
yet there is no more aommon-placestatement than
that the world in which we live is a four-dimen-
siona spacetime cntinuum.

Space is a three-dimensional continuum. By
this we mean that it is possible to describe the
position of a point (at rest) by means of three
numbers (co-ordinates) X, y, z, and that there is
an indefinite number of points in the neighbour-
hood o this one, the position of which can be
described by co-ordinates such as X, Y., z, which
may be & nea as we doose to the respective
values of the co-ordinates x, y, z of the first point.
In virtue of the latter property we speak of a
“continuum,” and owing to the fad that there
are three ©-ordinates we speak of it as being
“threedimensional.”

Similarly, the world of physical phenomena

which was briefly cdled “world” by Minkowski
65
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Is naturally four-dimensional in the spacetime
sense. For it is composed o individua events,
eadr of which is described by four numbers,
namely, three space co-ordinates x, y, z and a
time -ordinate, the time-value t. The “world”
Is in this nse aso a @ntinuum; for to every
event there ae as many “neighbouring’ events
(redised o at least thinkable) as we cae to
choose, the m-ordinates x,, Y, z, t; of which dffer
by an indefinitely small amount from those of the
event X, y, z t origindly considered. That we
have not been accustomed to regard the world
in this ense as a four-dimensional continuum is
due to the fact that in physics, before the advent
of the theory of relativity, time played a diff erent
and more independent rble, as compared with
the space o-ordinates. It is for this reason that
we have been in the habit of treating time & an
independent continuum. As a matter of fad,
acording to classica medanics, time is absolute,
I.e. it isindependent of the position and the condi-
tion of motion o the system of co-ordinates. We
see this expressed in the last equation of the
Galileian transformation (t' = t).

The four-dimensional mode of consideration of
the “world” is natura on the theory of relativity,
since aacording to this theory timeis robbed df its
independence. This is $own by the fourth equa-
tion d the Lorentz transformation:
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Vv
t——X
p=__¢

Moreover, according to this equation the time
difference At' of two events with respect to K
does nat in genera vanish, even when the time
difference At of the same events with referenceto
K vanishes. Pure “spacedistance” of two events
with respect to K results in “time-distance” of
the same events with resped to K'. But the
discovery of Minkowski, which was of importance
for the formal development of the theory of rela-
tivity, does not lie here. It is to be found rather
in the faa of his recognition that the four-dimen-
sional space-time aontinuum of the theory of rela-
tivity, in its most essential formal properties,
shows a pronounced relationship to the three-
dimensiona continuum of Euclidean geometrical
space! In order to gve due prominence to this
relationship, however, we must replace the usua
time -ordinate t by an imaginary magnitude
J -1ret proportional to it. Under these condi-
tions, the natura laws stisfying the demands of
the (special) theory of relativity assume mathe-
maticd forms, in which the time w-ordinate plays
exactly the same rdle as the three space co-
ordinates. Formally, these four co-ordinates
1 Cf. the somewhat more detail ed discusson in Appendix II.
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correspond exactly to the threespace ®-ordinates
in Euclidean geometry. It must be clea even to
the non-mathematician that, as a @mnsequence of
this purely formal addition to our knowledge, the
theory perforce gained cleaness in no mean
measure.

These inadequate remarks can gve the reader
only a vague nation of the important idea ©n-
tributed by Minkowski. Without it the general
theory of rdativity, of which the fundamental ideas
are developed in the foll owing pages, would perhaps
have gat no farther than its long clothes. Min-
kowski’s work is doubtless difficult of access to
anyone inexperienced in mathematics, but since
it is not necessary to have avery exact grasp of
this work in order to understand the fundamental
ideas of either the spedal or the general theory of
relativity, | shall at present leave it here, and
shall revert to it only towards the end of Part Il.
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PART 1|1
THE GENERAL THEORY OF RELATIVITY

XV

SPECIAL AND GENERAL PRINCIPLE OF
RELATIVITY

HE basal principle, which was the pivot of al

T our previous considerations, was the speaal

principle of relativity, i.e. the principle of

the physicd relativity of all uniform motion. Let
usoncemore analyse its meaning carefully.

It was at al times clea that, from the point of
view of the idea it conveys to us, every motion
must only be cnsidered as a relative motion.
Returning to the illustration we have frequently
used of the enbankment and the railway cariage,
we can express the fact of the motion here taking
place in the following two forms, both of which
are gualy justifiable:

(&) The arriage is in motion relative to the
embankment.

(b) The embankment is in motion relative to
the cariage.

In (a) the ambankment, in (b) the carriage,
serves as the body of reference in ou statement
69
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of the motion taking place If it is smply a
question of detecting or of describing the motion
involved, it is in principle immaterial to what
reference-body we refer the motion. As already
mentioned, thisis slf-evident, but it must not be
confused with the much more cmprehensive state-
ment cal ed “the principle of relativity,” which we
have taken as the basis of our investigations.

The principle we have made use of not only
maintains that we may equally well choose the
cariage or the anbankment as our reference-body
for the description of any event (for this, too, is
self-evident). Our principle rather asserts what
follows: If we formulate the general laws of
nature as they are obtained from experience by
making use of

(a) the enbankment as reference-body,
(b) the railway carriage as reference-body,

then these genera laws of nature (e.g. the laws of
medhanics or the law of the propagation of light
in vacuo) have exadly the sameformin bah cases.
This can adso be epresed as follows. For the
physical description o natural processes, neither
of the reference-bodies K, K' is unique (lit.
“spedally marked out”) as compared with the
other. Unlike the first, this latter statement need
not of necessity hald a priori; it is nat contained
in the conceptions of “motion” and “reference-
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body” and derivable from them; only experience
can dedde asto its correctnessor incorredness.

Up to the present, however, we have by no
means maintained the equivalence of all bodies
of reference K in connection with the formulation
of natural laws. Our course was more on the
following lines. In the first place, we started out
from the assumption that there exists a reference-
body K, whose condition of motion is such that
the Galiledan law holds with respect to it: A
particle left to itself and sufficiently far removed
from all other particles moves uniformly in a
straight line. With reference to K (Galileian
reference-body) the laws of nature were to be as
simple & possible. But in addition to K, all
bodies of referenceK' should be given preference
in this ense, and they should be exactly equiva-
lent to K for the formulation of natural laws,
provided that they are in a state of uniform
redili near and nonrrotary motion with respect to K;
all these bodies of reference ae to be regarded
as Gdlilaan reference-bodies. The validity of
the principle of relativity was assumed only for
these reference-bodies, but not for others (e.g.
those possessng motion o a different kind). In
this snse we speak of the spedal principle of
relativity, or spedal theory of relativity.

In contrast to this we wish to understand by
the “general principle of relativity” the following
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statement: All bodies of reference K, K', etc.,
are auivalent for the description o naturd
phenomena (formulation o the general laws of
nature), whatever may be their state of motion.
But before proceeding farther, it ought to be
pointed out that this formulation must be re-
placed later by a more éstrad one, for reasons
which will become evident at alater stage.

Since the introduction of the speda principle
of relativity has been justified, every intellect
which strives after generaisation must fed the
temptation to venture the step towards the general
principle of relativity. But a smple and ap-
parently quite reliable cnsideration seems to
suggest that, for the present at any rate, there is
little hope of success in such an attempt. Let
us imagine ourselves transferred to our old friend
the railway cariage, which is travelling a a
uniform rate. As long as it is moving uniformly,
the occupant of the carriage is not sensible of its
motion, and it is for this reason that he can un-
reluctantly interpret the facts of the cae &
indicating that the cariage is at rest, but the
embankment in motion. Moreover, according
to the speciad principle of reativity, this inter-
pretation is quite justified aso from a physica
point of view.

If the motion of the cariage is now changed
into a non-uniform motion, as for instance by a


http://books.google.com/books?id=n8QKAAAAIAAJ&pg=RA1-PA72

SPECIAL AND GENERAL PRINCIPLE 73

powerful application of the brakes, then the oc-
cupant of the cariage experiences a correspond-
ingly powerful jerk forwards. The retarded mo-
tion is manifested in the medhanical behaviour
of bodies relative to the person in the railway
cariage. The medhanical behaviour is different
from that of the case previoudly considered, and
for this reason it would appea to be impaossible
that the same medhanical laws hold relatively to
the non-uniformly moving cariage, as hald with
reference to the carriage when at rest or in uni-
form motion. At al events it is clear that the
Galileian law does not hold with respect to the
non-uniformly moving carriage. Because of this,
we fed compelled at the present juncture to grant
akind o absolute physicd redity to nan-uniform
motion, in opposition to the genera principle of
relativity. But in what follows we shall soon
seethat this conclusion cannot be maintained.
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XX
THE GRAVITATIONAL FIELD

“ 1| Fwe pick up a stone and then let it go, why
I does it fal to the ground?” The usual
answer to this question is. “Because it is
attracted by the earth.” Modern physics formu-
lates the answer rather differently for the foll ow-
ing reason. As a result of the more caeful study
of electromagnetic phenomena, we have come to
regard action at adistance as a process impossible
without the intervention of some intermediary
medium. If, for instance a magnet attrads a
piece of iron, we cannot be content to regard this
as meaning that the magnet acts directly on the
iron through the intermediate empty space but
we ae onstrained to imagine — after the manner
of Faraday —that the magnet aways cdls
into being something physically red in the space
around it, that something being what we cdl a
“magnetic field.” In its turn this magnetic field
operates on the piece of iron, so that the latter
strives to move towards the magnet. We shall
not discuss here the justification for this incidental

conception, which is indeed a somewhat arbi-
74
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trary one. We shal only mention that with its
aid electromagnetic phenomena can be theoret-
icaly represented much more satisfactorily than
without it, and this applies particularly to the
transmission of eledromagnetic waves. The
effects of gravitation also are regarded in an
analogous manner.

The ation of the eath on the stone takes
place indiredly. The eath produces in its sur-
roundings a gravitational field, which acts on the
stone and produces its motion of fall. As we
know from experience, the intensity of the adion
on abody diminishes acording to a quite definite
law, as we proceed farther and farther away from
the eath. From our point of view this means.
The law governing the properties of the gravita-
tional field in spacemust be a perfectly definite
one, in order correctly to represent the diminution
of gravitational action with the distance from
operative bodies. It is omething like this. The
body (e.g. the earth) produces afield in itsimme-
diate neighbourhood diredly; the intensity and
diredion of the field at points farther removed
from the body are thence determined by the law
which governs the properties in space of the
gravitational fields themselves.

In contrast to electric and magnetic fields, the
gravitational field exhibits a most remarkable
property, which is of fundamental importance
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for what foll ows. Bodies which are moving under
the sole influence of a gravitational field receve
an acceeration, which daces not in the least depend
either onthe material or onthe physical state of the
body. For instance, a piece of lead and a piece
of wood fal in exactly the same manner in a
gravitational field (in vacuo), when they start off
from rest or with the same initial velocity. This
law, which hdds most acairately, can be expressd
in a different form in the light of the following
consideration.

Acoording to Newton's law of motion, we have

(Force) = (inertial mass) X (accderation),

where the “inertiadl mass' is a characteristic
constant of the accelerated body. If now gravi-
tation is the caise of the acceleration, we then
have
(Force) = (gravitational masg X (intensity of the
gravitationd field),
where the “gravitational mass is likewise a
characteristic constant for the body. From these
two relations foll ows:
(gravitational mas9
(inertial masg
gravitationd field).

(acceleration) = X (intensity of the

If now, aswe find from experience, the aceera-
tion is to be independent of the nature and the
condition d the body and always the same for a
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given gavitational field, then the ratio o the
gravitational to the inertial mass must likewise
be the same for all bodes. By a suitable choice
of units we can thus make this ratio equal to
unity. We then have the following law: The
gravitational massof a body is equal to itsinertial
mass

It is true that this important law had hitherto
been recorded in mechanics, but it had not been
interpreted. A satisfadory interpretation can be
obtained only if we reagnise the following fad:
The same quality of a body manifests itself ac-
cording to circumstances as “inertia’ or as
“weight” (lit. “heasiness’). In the following
section we shal show to what extent this is
adually the cae, and how this question is con-
nected with the general paostulate of relativity.
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XX

THE EQUALITY OF INERTIAL AND GRAVITA-
TIONAL MASSAS AN ARGUMENT FOR THE
GENERAL POSTULATE OF RELATIVITY

E imagine alarge portion of empty space
so far removed from stars and other
appredable masses that we have before

us approximately the conditions required by the
fundamental law of Gadlilei. It is then possible
to choose aGalileian reference-body for this part
of space(world), relative to which points at rest
remain at rest and points in motion continue
permanently in uniform redilinear motion. As
reference-body let us imagine a spacious chest
resembling a room with an observer inside who
Is equipped with apparatus. Gravitation nat-
urally does not exist for this observer. He must
fasten himself with strings to the floor, otherwise
the dightest impad against the floor will cause
him to rise dowly towards the ceiling of the
room.

To the middle of the lid of the dest is fixed
externaly a hook with rope attached, and now a
“being’ (what kind of a being is immaterial to

78
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us) begins pulling at this with a constant force
The dest together with the observer then begin
to move “upwards’ with a uniformly accelerated
motion. In course of time their velocity will
reaty urhead-of values— provided that we ae
viewing al this from another reference-body
which is nat being pull ed with arope.

But how does the man in the chest regard the
process? The ace@eration of the chest will be
transmitted to him by the reaction of the floor
of the chest. He must therefore take up this
pressure by means of his legs if he does not wish
to be laid out full length on the floor. He is then
standing in the chest in exactly the same way as
anyone stands in a room of a house on ou eath.
If he release abody which he previously had in
his hand, the acceleration of the chest will no
longer be transmitted to this body, and for this
reason the body will approach the floor of the
chest with an accderated relative motion. The
observer will further convince himself that the
accderation o the body towards the floor of the dest
Is always of the same magnitude, whateve kind d
body he may happen to use for the experiment.

Relying on his knowledge of the gravitational
field (asit was discussed in the preceding sedion),
the man in the dest will thus come to the @n-
clusion that he and the chest are in a gravitational
field which is constant with regard to time. Of
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course he will be puzzled for amoment as to why
the chest does not fall in this gravitational field.
Just then, however, he discovers the hook in the
midde of the lid of the chest and the rope which
Is attached to it, and he @nsequently comes to
the conclusion that the chest is suspended at rest
in the gravitational field.

Ought we to smile at the man and say that he
errs in his concluson? | do not believe we ought
if we wish to remain consistent; we must rather
admit that his mode of grasping the situation
violates neither reason nor known medanica
laws. Even though it is being acalerated with
respect to the “Galileian space” first considered,
we can neverthelessregard the dhest as being at
rest. We have thus good grounds for extending
the principle of reativity to include bodies of
reference which are accéerated with respect to
eadh aher, and as a result we have gained a
powerful argument for a generaised postulate
of relativity.

We must note caefully that the possibility of
this mode of interpretation rests on the fundamen-
tal property of the gravitational field of giving
all bodies the same accderation, or, what comes
to the same thing, on the law of the equality of
inertial and gavitational mass If this natural
law did not exist, the man in the ace erated chest
would not be able to interpret the behaviour of


http://books.google.com/books?id=n8QKAAAAIAAJ&pg=RA1-PA80

INERTIAL AND GRAVITATIONAL MASS 81

the bodies around him on the supposition d a
gravitational field, and he would not be justified
on the grounds of experience in suppasing his
reference-body to be“at rest.”

Suppose that the man in the chest fixes a rope
to the inner side of the lid, and that he attaches
a body to the freeend of the rope. The result of
this will be to stretch the rope so that it will
hang “verticdly” downwards. If we ak for an
opinion of the cause of tension in the rope, the
man in the chest will say: “The suspended body
experiences a downward forcein the gravitationa
field, and this is neutralised by the tension of the
rope; what determines the magnitude of the ten-
sion of the rope is the gravitational mass of the
suspended body.” On the other hand, an ob-
server who is poised fredy in spacewill interpret
the mndition of things thus: “The rope must
perforce take part in the accderated motion of
the dhest, and it transmits this motion to the body
attached to it. The tenson of the rope is just
large enoughto effed the accéeration o the body.
That which determines the magnitude of the
tension o the rope is the inertial mass of the
body.” Guided by this example, we see that our
extension of the principle of relativity implies
the necessity of the law of the equality of inertia
and gravitational mass Thus we have obtained
aphysical interpretation o thislaw.
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From our consideration d the accderated chest
we see that a general theory of relativity must
yield important results on the laws of gravitation.
In point of fact, the systematic pursuit of the
general idea of redativity has supplied the laws
satisfied by the gravitational field. Before pro-
cealing farther, however, | must warn the reader
against a misconception suggested by these wn-
siderations. A gravitational field exists for the
man in the dchest, despite the fad that there was
no such field for the co-ordinate system first
chosen. Now we might easily suppose that the
existence of a gravitationa field is aways only
an apparent one. We might also think that,
regardliess of the kind of gravitational field which
may be present, we @uld always choose another
reference-body such that no gravitationa field
exists with reference to it. This is by no means
true for al gravitational fields, but only for those
of quite specid form. It is, for instance, im-
possible to choose a body of reference such that,
as judged from it, the gravitationa field of the
eath (in its entirety) vanishes.

We can now appreciate why that argument is
nat convincing, which we brought forward against
the genera principle of relativity at the end of
Sedion XVIII. It is cetanly true that the
observer in the railway cariage experiences a
jerk forwards as a result of the application of the
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brake, and that he remgnises in this the non-
uniformity of motion (retardation) of the carriage.
But he is compelled by nobody to refer this jerk
to a “red” acceeration (retardation) of the
cariage. He might aso interpret his experience
thus:. “My body of reference (the carriage)
remains permanently at rest. With reference to
it, however, there exists (during the period of
application of the brakes) a gravitationa field
which is directed forwards and which is variable
with respect to time. Under the influence of this
field, the embankment together with the eath
moves nontuniformly in such a manner that their
original velocity in the badkwards direction is
continuously reduced.”
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XXI1

IN WHAT RESPECTS ARE THE FOUNDATIONS
OF CLASSCAL MECHANICS AND OF THE
SPECIAL THEORY OF RELATIVITY UN-
SATISFACTORY?

E have dready stated severa times that
classicd medanics starts out from the
following law: Material particles suf-

ficiently far removed from other material particles
continue to move uniformly in a straight line
or continue in a state of rest. We have aso
repeatedly emphasised that this fundamental law
can only be valid for bodies of reference K which
possess certain unique states of motion, and which
are in uniform translational motion relative to
ead aher. Reative to other reference-bodies
K the law is not valid. Both in classicd mechanics
and in the special theory of relativity we there-
fore differentiate between reference-bodies K
relative to which the recognised “laws of nature”
can be said to hdd, and reference-bodies K
relative to which these laws do rot hold.

But no person whose mode of thought islogical
can rest satisfied with this condition of things.

He asks: “How does it come that cetain refer-
84
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ence-bodies (or their states of motion) are given
priority over other reference-bodes (or their
states of motion)? What is the reason for this
preference? In order to show clearly what | mean
by this question, | shall make use of a comparison.

| am standing in front of a gas range. Stand-
ing alongside of each other on the range ae two
pans o much alike that one may be mistaken for
the other. Both are half full of water. | notice
that steam is being emitted continuously from the
one pan, but not from the other. | am surprised at
this, even if | have never seen either a gas range
or a pan before. But if | now notice aluminous
something of bluish colour under the first pan but
not under the other, | ceae to be astonished, even
if | have never before seen a gas flame. For |
can only say that this bluish something will cause
the emission d the steam, or at least possibly it
may do so. If, however, | notice the bluish
something in neither case, and if | observe that
the one continuously emits deam whilst the
other does not, then | shall remain astonished
and dssatisfied until | have discovered some
circumstance to which | can attribute the diff erent
behaviour of the two pans.

Analogoudly, | se&k in vain for ared something
in classical medhanics (or in the specia theory
of relativity) to which | can attribute the diff erent
behaviour of bodies considered with respect to
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the reference-systems K and K'' Newton saw
this objedion and attempted to invalidate it, but
without success But E. Mach recognised it
most clealy of all, and because of this objedion
he clamed that medianics must be placed ona
new basis. It can only be got rid of by means of
a physics which is conformable to the generd
principle of relativity, since the equations of such
atheory hdd for every body of reference, whatever
may be its gate of motion.

! The objedion is of importance more espedally when the state
of motion of the reference-body is of such a nature that it does not
require any external agency for its maintenance, e.g. in the case when
the reference-body isrotating unformly.
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XX

A FEW INFERENCES FROM THE GENERAL
THEORY OF RELATIVITY

HE considerations of Sedion XX show
T that the general theory™ of relativity puts
us in a position to derive properties of the
gravitational field in a purely theoretical manner.
Let us suppose, for instance, that we know the
spacetime “course” for any natural process
whatsoever, as regards the manner in which it
takes placein the Galilelan domain relative to a
Gdlileilan bady of reference K. By means of
purely theoretical operations (i.e. simply by cd-
culation) we ae then able to find how this known
natural process appears, as sen from areference-
body K' which is accéerated relatively to K.
But since agravitationa field exists with respect
to this new body of referenceK', our consideration
also teaches us how the gravitational field in-
fluences the processstudied.
For example, we learn that a body which is
in a state of uniform redilinea motion with
respect to K (in accordance with the law of

Galilei) is executing an accelerated and in generd
87

[" The word “theory” was changed to “principle” in both placesin
later editions. — J.M.]
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curvilinear motion with respect to the ace erated
reference-body K' (chest). This acceleration o
curvature arresponds to the influence on the
moving body of the gravitational field prevailing
relatively to K'. It is known that a gravita-
tional field influences the movement of bodiesin
this way, so that our consideration supplies us
with nothing essentially new.

However, we obtain a new result of fundamental
importance when we cary out the analogous
consideration for a ray of light. With respect
to the Galileian reference-body K, such aray of
light is transmitted redilinealy with the velocity
C. It can easily be shown that the path of the
same ray of light is no longer a straight line when
we mnsider it with reference to the accelerated
chest (reference-body K'). From this we con-
clude, that, in general, rays of light are propagated
curvilinearly in gravitational fields. In two re-
spects thisresult is of great importance.

In the first place it can be compared with the
redity. Although a detailed examination of the
guestion shows that the curvature of light rays
required by the genera theory of reaivity is
only excealingly small for the gravitational fields
at our disposal in pradice its estimated magni-
tude for light rays passng the sun at grazing
incidence is nevertheless 1.7 seconds of arc. This
ought to manifest itself in the following way.
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As xen from the eath, cetan fixed stars appear
to be in the neighbaurhood of the sun, and are
thus capable of observation during a total edipse
of the sun. At such times, these stars ought to
appea to be displaced outwards from the sun
by an amount indicated above, as compared with
their apparent position in the sky when the sun
Is gtuated at another part of the heavens. The
examination of the crrectness or otherwise of
this deduction is a problem of the greatest im-
portance, the ealy solution of which is to be
expected of astronomers.’

In the second place our result shows that, ac
cording to the general theory of relativity, the
law of the mnstancy of the velocity of light in
vacuo, which constitutes one of the two funda-
mental assumptions in the spedal theory of
relativity and to which we have drealy frequently
referred, cannot clam any unlimited validity.
A curvature of rays of light can orly take place
when the velocity of propagation d light varies
with position. Now we might think that as a
consequence of this, the specia theory of relativity
and with it the whale theory of relativity would
be laid in the dust. But in redity this is not the

1 By means of the star photographs of two expeditions equipped
by a Joint Committee of the Royal and Royal Astronomicd Societies,
the eistence of the deflection d light demanded by theory was con-
firmed during the solar edipse of 2%th May, 1919 (Cf. Appendix

1)


http://books.google.com/books?id=n8QKAAAAIAAJ&pg=RA1-PA89

90 GENERAL THEORY OF RELATIVITY

cae. We @n only conclude that the spead
theory of relativity canot clam an unlimited
domain of validity; its results had only so long
as we are able to dsregard the influences of
gravitational fields on the phenomena (e.g. of
light).

Since it has often been contended by oppo-
nents of the theory of reativity that the specid
theory of relativity is overthrown by the general
theory of relativity, it is perhaps advisable to make
the facts of the ase deaer by means of an
appropriate comparison. Before the development
of eledrodynamics the laws of electrostatics and
the laws of eledricity were regarded indiscrim-
inately. At the present time we know that
eledric fields can be derived corredly from elec
trostatic considerations only for the cae, which
IS never gtrictly redised, in which the eledrica
masses are quite at rest relatively to each other,
and to the co-ordinate system. Should we be
justified in saying that for this reason electro-
statics is overthrown by the field-equations of
Maxwell in electrodynamics? Not in the least.
Eledrostatics is contained in electrodynamics
as a limiting case; the laws of the latter lead
diredly to those of the former for the cae in which
the fields are invariable with regard to time.
No fairer destiny could be dlotted to any physical
theory, than that it should o itself point out the
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way to the introduction d a more wmprehensive
theory, in which it lives on as alimiting case.

In the example of the transmisgon dof light just
dealt with, we have seen that the general theory
of relativity enables us to derive theoreticdly
the influence of a gravitational field on the course
of natural processes, the laws of which are dready
known when a gravitational field is absent. But
the most attradive problem, to the solution of
which the genera theory of relativity supplies
the key, concerns the investigation d the laws
satisfied by the gravitational field itself. Let us
consider thisfor a moment.

We ae aquainted with spacetime domains
which behave (approximately) in a “Galileian”
fashion under suitable dhoice of reference-body,
I.e. domains in which gavitational fields are
absent. If we now refer such a domain to a
reference-body K' possessing any kind of motion,
then relative to K' there exists a gravitational
field which is variable with respect to space ad
time.! The character of this field will of course
depend on the motion chosen for K'. Accord-
ing to the genera theory of relativity, the generd
law of the gravitational field must be satisfied
for all gravitational fields obtainable in this way.
Even though by no means al gravitational fields

' This follows from a generalisation of the discusson in Sec
tion XX.
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can be produced in this way, yet we may enter-
tain the hope that the general law of gravitation
will be derivable from such gravitationa fields of
a speda kind. This hope has been redised in
the most beautiful manner. But between the
clea vision of this goal and its adua redisation
it was necessary to surmount a serious difficulty,
and as this lies deep at the root of things, | dare
not withhold it from the reader. We require
to extend our ideas of the space-time continuum
still farther.
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XX

BEHAVIOUR OF CLOCKS AND MEASURING-
RODS ON A ROTATING BODY
OF REFERENCE

ITHERTO | have purposely refrained
H from spe&king about the physical in-

terpretation of space- and time-data in
the case of the general theory of relativity. As a
consequence, | am guilty of a cetain sovenliness
of treament, which, as we know from the special
theory of relativity, is far from being wiim-
portant and pardoreble. It is now high time
that we remedy this defect; but | would mention
at the outset, that this matter lays no small claims
on the patience and onthe power of abstradion
of the reader.

We start off again from quite special cases,
which we have frequently used before. Let us
consider a space-time domain in which no gravi-
tational field exists relative to a reference-body
K whaose state of motion hes been suitably chosen.
K is then a Galileian reference-body as regards
the domain considered, and the results of the
gpecia theory of relativity hold relative to K.

Let us suppose the same domain referred to a
93
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second body of reference K', which is rotating
uniformly with respect to K. In order to fix our
ideas, we shall imagine K' to be in the form of a
plane circular disc, which rotates uniformly in
its own plane about its centre. An odbserver
who is ditting eacentrically on the disc K' is
sensible of aforcewhich acts outwardsin aradia
diredion, and which would be interpreted as an
eff ect of inertia (centrifugal force) by an observer
who was at rest with respect to the original
reference-body K. But the observer on the disc
may regard his disc as a reference-body which
Is “at rest”; on the basis of the genera principle
of relativity he is justified in doing this. The
force acting on himself, and in fact on all other
bodies which are & rest relative to the disc, he
regards as the dfect of a gravitationa field.
Nevertheless the space-distribution of this gravi-
tationa field is of akind that would not be passble
on Newton's theory of gravitation.! But since
the observer believes in the genera theory of
relativity, this does not disturb him; he is quite
in the right when he believes that a general law
of gravitation can be formulated — a law which
not only explains the motion of the stars cor-
redly, but also the field of force experienced by
himself.

! The field dsappeas at the centre of the disc and increases pro-
portionally to the distance from the centre & we proceel outwards.
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The observer performs experiments on his cir-
cular disc with clocks and measuring-rods. In
doing so, it is his intention to arrive at exact
definitions for the signification of time- and
space-data with reference to the darcular disc K',
these definitions being based on his observations.
What will be his experiencein this enterprise?

To start with, he places one of two identicdly
constructed clocks at the centre of the arcular
disc, and the other onthe alge of the disc, so that
they are & rest relative to it. We now ask our-
selves whether both clocks go at the same rate
from the standpoint of the non-rotating Galileian
reference-body K. As judged from this body,
the clock at the aentre of the disc has no velocity,
whereas the dock at the alge of the disc is in
motion relative to K in consequence of the rota-
tion. According to a result obtained in Sedion
XIl, it follows that the latter clock goes at a rate
permanently slower than that of the dock at
the centre of the drcular disc, i.e. as observed
from K. It is obvious that the same dfed would
be noted by an observer whom we will imagine
sitting alongside his clock at the centre of the
circular disc. Thus on our circular disc, or, to
make the Gase more generd, in every gravitationa
field, a dock will go more quickly or lessquickly,
acording to the position in which the dock is
situated (at rest). For this reason it is nat
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possible to obtain a reasonable definition d time
with the ad o clocks which are arranged at
rest with respect to the body of reference A
similar difficulty presents itself when we atempt
to apply our ealier definition d simultaneity in
such a cae, but | do not wish to go any farther
into this question.

Moreover, a this dage the definition of the
space ®-ordinates also presents unsurmountable
difficulties. If the observer applies his standard
measuring-rod (a rod which is short as compared
with the radius of the disc) tangentialy to the
edge of the disc, then, as judged from the Galil elan
system, the length of this rod will be less than 1,
since according to Sedion XII, moving bodies
suffer a shortening in the direction of the motion.
On the other hand, the measuring-rod will not
experience ashortening in length, as judged from
K, if it is applied to the disc in the direction of
the radius. If, then, the observer first measures
the circumference of the disc with his measuring-
rod and then the diameter of the disc, on divid-
ing the one by the other, he will not obtain as
quctient the familiar number m=3.14 . . ., but
a larger number," whereas of course, for a disc
which is at rest with resped to K, this operation

! Throughout this consideration we have to use the Galileian
(nonrotating) system K as reference-body, since we may only assume
the validity of the results of the spedal theory of relativity relative
to K (relative to K' a gravitational field prevail s).
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would yield m exadly. This proves that the
propositions of Euclidean geometry cannot hold
exactly on the rotating disc, nor in general in a
gravitational field, at least if we dtribute the
length 1 to the rod in all positions and in every
orientation. Hence the idea of a straight line
also loses its meaning. We ae therefore nat in
a position to define eactly the co-ordinates
X, Y, Z relative to the disc by means of the method
used in discussing the special theory, and as long
as the co-ordinates and times of events have not
been defined we aannot assign an exact meaning
to the natural laws in which these occur.

Thus al our previous conclusions based on
genera relativity would appea to be caled in
question. In redity we must make a subtle
detour in order to be able to apply the postulate
of general relativity exadly. | shal prepare
the reader for thisin the following paragraphs.
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XXV

EUCLIDEAN AND NON-EUCLIDEAN
CONTINUUM

HE surface of a marble table is spread out
in front of me. | can get from any one
point on this table to any other point by

passng continuously from one point to a “neigh
bouring” one, and repeating this processa (large)
number of times, or, in other words, by going
from point to point without executing “jumps.””
| am sure the reader will appreaate with sufficient
cleaness what | mean here by “neighbouring”
and by “jumps’ (if he is not too pedantic). We
express this property of the surface by describing
the latter as a continuum.

Let us now imagine that a large number of
little rods of equal length have been made, their
lengths being small compared with the dimensions
of the marble dab. When | say they are of equa
length, | mean that one @n be laid onany other
without the ends overlapping. We next lay four
of these little rods on the marble slab so that they
constitute a quadrilateral figure (a sguare), the
diagonals of which are equally long. To ensure
the equality of the diagonals, we make use of a

98

[" jumps.” —JM.]
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little testing-rod. To this square we ad similar
ones, each o which has one rod in common with
the first. We proceed in like manner with ead of
these squares urtil finally the whole marble slab
Is lad ou with squares. The arrangement is
such, that each side of a square belongs to two
squares and each corner to four squares.

It is a veritable wonder that we can cary out
this business without getting into the greatest
difficulties. We only need to think of the fol-
lowing. If at any moment three squares med
at a corner, then two sides of the fourth square
are dready laid, and as a wmnsequence, the a-
rangement of the remaining two sides of the
square is aready completely determined. But
| am now nolonger able to adjust the quadril ateral
so that its diagonals may be equa. If they are
equal of their own accord, then thisis an especial
favour of the marble slab and dof the little rods
about which | can only be thankfully surprised.
We must neeals experience many such surprises
If the construction isto be successul.

If everything has really gone smoothly, then
| say that the points of the marble slab congtitute a
Euclidean continuum with respect to the little
rod, which has been used as a “distance” (line-
interval). By choosing one corner of a square &
“origin,” | can charaderise every other corner
of a square with reference to this origin by means
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of two numbers. | only neal state how many
rods | must pass over when, starting from the
origin, | proceed towards the “right” and then
“upwards,” in order to arrive & the corner of the
square under consideration. These two numbers
are then the “Cartesian co-ordinates’ of this
corner with reference to the “Cartesan co-
ordinate system” which is determined by the
arrangement of little rods.

By making use of the following modificaion
of this abstract experiment, we reaognise that
there must also be cases in which the experiment
would be unsuccessul. We shal suppose that
the rods “expand” by an amournt proportional to
the increase of temperature. We heat the central
part of the marble dab, but not the periphery,
in which case two of our little rods can still be
brought into coincidence at every position on
the table. But our construction of squares must
necessarily come into disorder during the heding,
because the little rods on the centra region of
the table expand, whereas those on the outer
part do not.

With reference to aur little rods— defined as
unit lengths— the marble slab is no longer a
Euclidean continuum, and we ae also no longer
in the position of defining Cartesian co-ordinates
diredly with their aid, since the &aove construc-
tion can no longer be caried out. But since
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there are other things which are not influenced
in a similar manner to the little rods (or perhaps
not a all) by the temperature of the table, it is
possible quite naturaly to maintain the point of
view that the marble dab is a “Euclidean con-
tinuum.” This can be done in a satisfadory
manner by making a more subtle stipulation
about the measurement or the mparison of
lengths.

But if rods of every kind (i.e. of every material)
were to behave in the same way as regards the
influence of temperature when they are on the
variably heaed marble slab, and if we had no
other means of detecting the dfed of temperature
than the geometrical behaviour of our rods in
experiments analogous to the one described abowve,
then our best plan would be to assign the distance
one to two points on the dab, provided that the
ends of one of our rods could be made to coincide
with these two paints; for how ese should we
define the distance without our proceeding being
in the highest measure grossly arbitrary? The
method of Cartesian co-ordinates must then be
discaded, and replaced by another which does
not assume the validity of Euclidean geometry
for rigid bodies! The reader will natice that

! Mathematicians have been confronted with our problem in the
following form. If we ae given a surface(e.g. an dlli psoid) in Eucli-
dean three-dimensional space, then there eists for this surface a
two-dimensional geometry, just as much as for a plane surface
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the situation depicted here corresponds to the one
brought about by the genera postulate of relativity
(Sedion XXIII).

Gauss undertook the task of treaing this two-dimensional geometry
from first principles, without making use of the fad that the surface
belongs to a Euclidean continuum of three dimensions. If we im-
agine constructions to be made with rigid rods in the surface (similar
to that above with the marble dab), we should find that different
laws hold for these from those resulting on the basis of Euclidean
plane geometry. The surface is not a Euclidean continuum with
resped to the rods, and we cannot define Cartesian co-ordinates in
the surface Gauss indicaed the principles acording to which we
can tred the geometricd relationships in the surface and thus
pointed out the way to the method d Riemann of treaing multi-
dimensional, non-Euclidean continua. Thus it is that mathemati-
cians long ago solved the formal problems to which we ae led by the
general postulate of relativity.
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XXV
GAUSSAN CO-ORDINATES

CCORDING to Gauss, this combined ana-
lyticd and geometricad mode of handing
the problem can be arived a in the

following way. We imagine asystem of arbitrary
curves (see Fig. 4) drawn on the surface of the
table. These we designate as u-curves, and we
indicate each of them by means of a number.
The curves u=1, u=2 and u=3 are drawn
in the diagram. Between the curves u=1 and
u=2we must imagine an
infinitely large number to
be drawn, al of which
correspond to real num-
bers lying between 1 and
2. We have then a system
of u-curves, and this “in-
finitely dense” system covers the whole surfaceof
the table. These u-curves must not intersect each
other, and through each point of the surfaceone
and only one airve must pass. Thus a perfectly
definite value of u belongs to every paint on the

surface of the marble dab. In like manner we
103
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imagine asystem of v-curves drawn onthe surface
These satisfy the same @nditions as the u-curves,
they are provided with numbers in a correspond-
ing manner, and they may likewise be of arbitrary
shape. It follows that a vaue of u and a vaue
of v belong to every point on the surface of the
table. We @l these two numbers the a-or-
dinates of the surface of the table (Gaussan
co-ordinates). For example, the point P in the
diagram has the Gausdan co-ordinates u =3,
v=1. Two neighbouring points P and P' on
the surface then correspond to the @-ordinates
P: u, v
P u+du, v+ady,
where du and dv signify very small numbers. In
a smilar manner we may indicate the distance
(line-interval) between P and P', as measured
with a little rod, by means of the very small
number ds. Then according to Gauss we have
ds* = g,,du? +2g,,dudv+ g,,dv?,
where 0.1, G2, O, @e magnitudes which depend
in a perfedly definite way on u and v. The
magnitudes g, g.. and g, determine the behaviour
of the rods relative to the u-curves and v-curves,
and thus aso relative to the surface of the table.
For the cae in which the points of the surface
considered form a Euclidean continuum with
reference to the measuring-rods, but only in this
case, it is possible to draw the u-curves and
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v-curves and to attach numbers to them, in such
amanner, that we simply have:
ds? = du? + dv2.

Under these conditions, the u-curves and v-curves
are straight lines in the sense of Euclidean geom-
etry, and they are perpendicular to each aher.
Here the Gaussian co-ordinates are simply Car-
tesian ores. It is clea that Gauss co-ordinates
are nothing more than an association of two sets
of numbers with the points of the surface wn-
sidered, of such a nature that numerica values
differing very dlightly from ead other are &0-
ciated with neighbouring points “in space.”

So far, these considerations hold for a @n-
tinuum of two dimensions. But the Gaussan
method can be applied also to a @ntinuum of
threg four or more dimensions. If, for instance,
a ontinuum of four dimensions be suppased
available, we may represent it in the following
way. With every point of the cntinuum we
associate abitrarily four numbers, X, X, Xs, X,
which are known as “co-ordinates.” Adjacent
points correspond to adjacent values of the co-
ordinates. If a distance ds is associated with
the aljacent points P and P', this distance being
measurable and well-defined from a physica point
of view, then the foll owing formula hads:

ds® =g, dx* +2g,dx dx, . . . . +0,dx7,
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where the magnitudes g.,, etc., have vaues which
vary with the position in the @ntinuum. Only
when the continuum is a Euclidean one is it
possible to associate the co-ordinates x; . . X, with
the points of the continuum so that we have
simply
ds? = dx? +dx2 +dx2 +dx?.

In this case relations hold in the four-dimensional
continuum which are analogous to those holding
in our threedimensional measurements.

However, the Gauss treatment for ds* which
we have given above is not aways possble. It
Is only possible when sufficiently small regions
of the continuum under consideration may be
regarded as Euclidean continua. For example,
this obviously halds in the case of the marble slab
of the table and local variation of temperature.
The temperature is practically constant for a
small part of the dab, and thus the geometrical
behaviour of the rods is almost as it ought to be
acording to the rules of Euclidean geometry.
Hence the imperfections of the construction o
squares in the previous sction do not show them-
selves clearly until this construction is extended
over a oonsiderable portion o the surface of the
table.

We can sum this up as follows: Gaussinvented
a method for the mathematical treatment of
continua in genera, in which “sizerelations’
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(“distances’ between neighbouring points) are
defined. To every point of a @ntinuum are
assigned as many numbers (Gausdan co-ordi-
nates) as the continuum has dimensions. This
Is done in such away, that only one meaning can
be attached to the assignment, and that numbers
(Gaussan co-ordinates) which dffer by an in-
definitely small amount are asdgned to adjacent
points. The Gaussian co-ordinate system is a
logical generalisation of the Cartesian co-ordinate
system. It is also applicable to non-Euclidean
continua, but only when, with respect to the
defined “size” or “distance” small parts of
the continuum under consideration behave more
nealy like a Euclidean system, the smaller the
part of the cntinuum under our notice
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XXV

THE SPACE-TIME CONTINUUM OF THE SPE-
CIAL THEORY OF RELATIVITY CONSID-
ERED AS A EUCLIDEAN CONTINUUM

E are now in a position to formulate
more exactly the idea of Minkowski,
which was only vaguely indicated in

Sedion XVII. In accordance with the spedad
theory of relativity, certain co-ordinate systems
are given preference for the description of the
four-dimensional, spacetime ntinuum. We
cdled these “Galileian co-ordinate systems.”
For these systems, the four co-ordinates X, v,
z, t, which determine an event or —in aher
words—a point of the four-dimensional con-
tinuum, are defined physicdly in a simple manner,
as st forth in detail in the first part of this book.
For the transition from one Galilelan system to
anather, which is moving wiformly with reference
to the first, the equations of the Lorentz trans-
formation are valid. These last form the basis
for the derivation of deductions from the specia
theory of relativity, and in themselves they are

nothing more than the expression o the universal
108
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validity of the law of transmission of light for all
Galilelan systems of reference

Minkowski found that the Lorentz transforma-
tions satisfy the following simple conditions.
Let us consider two neighbouring events, the
relative position of which in the four-dimensiona
continuum is given with respect to a Galileian
reference-body K by the space w-ordinate dif-
ferences dx, dy, dz and the time-difference dt.
With reference to a second Galileian system we
shall suppose that the crresponding differences
for these two events are dx', dy', dz, dt'. Then
these magnitudes always fulfil the condition.!

dx? +dy? +dZ? — c?dt? = dx? + dy'? + dz*? — c2dt'2.

The validity of the Lorentz transformation
follows from this condition. We can expressthis
as follows: The magnitude

ds? = dx* +dy? +dz* —c? dt?,

which belongs to two adjacent points of the four-
dimensional spacetime @ntinuum, has the same
value for all selected (Galileian) reference-bodies.

If we replacex, Y, z, i/ —1Ct, by X, X, Xs, X, WE
also abtain the result that

ds? = dx? +dx2 + dx2 +dx2
Is independent of the choice of the body of refer-

L Cf. Appendices | and Il. The relations which are derived
there for the m-ordinates themselves are valid also for co-ordinate
differences, and thus also for co-ordinate differentials (indefinitely
small differences).

[ ds? =dx? +dx2 +dx? +dx? —JIM.]
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ence We cdl the magnitude ds the “distance’
apart of the two events or four-dimensional paints.

Thus, if we choose as time-variable the im-
aginary variable /-1 ct instead of the redl

quantity t, we can regard the spacetime con-
tinuum — in acmrdance with the specia theory
of relativity — as a “Euclidean” four-dimensional
continuum, a result which follows from the
considerations of the preceding sedion.
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XXV I

THE SPACE-TIME CONTINUUM OF THE
GENERAL THEORY OF RELATIVITY IS
NOT A EUCLIDEAN CONTINUUM

N the first part of this book we were ale to
make use of spacetime @-ordinates which
alowed o a smple and direct physica in-

terpretation, and which, according to Sedion
XXV, can be regarded as four-dimensional
Cartesian co-ordinates. This was possible on
the basis of the law of the constancy of the ve-
locity of light. But acmrding to Section XXII,”
the general theory of relativity cannot retain
this law. On the contrary, we arived at the
result that according to this latter theory the
velocity of light must always depend on the co-
ordinates when a gravitational field is pres
ent. In connedion with a specific illustration in
Sedion XXIII, we found that the presence of
a gravitationa field invaidates the definition of
the co-ordinates and the time, which led us to
our objedive in the special theory of relativity.

In view of the results of these considerations

we ae led to the mnviction that, according to
111
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the general principle of relativity, the space-time
continuum cannot be regarded as a Euclidean
one, but that here we have the general case,
corresponding to the marble dab with loca
variations of temperature, and with which we
made a@uantance & an example of a two-
dimensional continuum. Just as it was there
iImpossible to construct a Cartesian co-ordinate
system from equal rods, so here it is impossible
to build up a system (reference-body) from rigid
bodies and clocks, which shall be of such a nature
that measuring-rods and clocks, arranged rigidly
with resped to one another, shal indicate posi-
tion and time direaly. Such was the essence of
the difficulty with which we were confronted in
Sedion XXIII.

But the considerations of Sections XXV and
XXV show us the way to surmount this diffi-
culty. We refer the four-dimensional space-time
continuum in an arbitrary manner to Gauss
co-ordinates. We adgn to every point of the
continuum (event) four numbers, X, X, Xs, X
(co-ordinates), which have not the least direct
physical significance but only serve the purpose
of numbering the points of the continuum in a
definite but arbitrary manner. This arrangement
does naot even need to be of such a kind that we
must regard X;, X, Xs, as “space” co-ordinates
and X, as a“time” co-ordinate.
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The reader may think that such a description
of the world would be quite inadequate. What
does it mean to assgn to an event the particular
co-ordinates X;, X, Xs, X, if in themselves these
co-ordinates have no significance? More caeful
consideration shows, however, that this anxiety
Is unfounded. Let us consider, for instance a
materia point with any kind o motion. If this
point had only a momentary existence without
duration, then it would be described in space-
time by a single system of values X, X, Xs, Xa.
Thus its permanent existence must be char-
aderised by an infinitely large number of such
systems of values, the w-ordinate values of
which are so close together as to give @ntinuity;
corresponding to the material point, we thus have
a (uni-dimensional) line in the four-dimensional
continuum. In the same way, any such lines
In our continuum correspond to many points in
motion. The only statements having regard to
these points which can claim a physicd existence
are in redity the statements about their en-
counters. In ou mathematicd treatment, such
an encounter is expressed in the fad that the
two lines which represent the motions of the
points in question have a particular system of
co-ordinate values, X;, X, X, X, in common.
After mature consideration the reader will doubt-
less admit that in redity such encounters con-
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stitute the only adual evidence of a time-space
nature with which we med in physicd statements.

When we were describing the motion of a
materia point relative to a body of reference, we
stated nothing more than the encounters of this
point with particular points of the reference-body.
We can also determine the corresponding values
of the time by the observation of encounters of
the body with clocks, in conjunction with the
observation of the encounter of the hands of
clocks with particular paints on the dias. It is
just the same in the cae of spacemeasurements
by means of measuring-rods, as alittle considera-
tionwill show.

The following statements hold generally: Every
physical description resolves itself into a number
of statements, each of which refers to the space-
time wincidence of two events A and B. In
terms of Gaussian co-ordinates, every such state-
ment is expressed by the agreement of their four
co-ordinates Xi, X, Xs, X. Thus in redlity, the
description o the time-space ontinuum by
means of Gauss co-ordinates completely replaces
the description with the ad of a body of reference
without suffering from the defects of the latter
mode of description; it is not tied dovn to the
Euclidean character of the continuum which has
to be represented.
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XXV

EXACT FORMULATION OF THE GENERAL
PRINCIPLE OF RELATIVITY

E are now in a position to replace the
provisional formulation d the general
principle of relativity given in Sedion

XVIII by an exact formulation. The form
there used, “All bodies of reference K, K', etc.,,
are auivalent for the description o naturd
phenomena (formulation o the general laws of
nature), whatever may be their state of motion,”
cannot be maintained, because the use of rigid
reference-bodies, in the sense of the method fol-
lowed in the speda theory of relativity, is in
genera not possible in space-time description.
The Gauss co-ordinate system has to take the
place of the body of reference. The following
statement corresponds to the fundamental idea
of the genera principle of reativity: “All Gaus-
sian co-ordinate systems are esentially equivalent
for the formulation of the general laws of nature.”
We can state this general principle of relativity
in still another form, which renders it yet more

clealy intelligible than it is when in the form of
115
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the natural extension of the specia principle
of relativity. According to the special theory of
relativity, the equations which express the genera
laws of nature pass over into equations of the
same form when, by making use of the Lorentz
transformation, we replacethe spacetime variables
X, Y, z t, of a(Gdlil elan) reference-body K by the
spacetime variables X, y, Z, t', of anew reference
body K'. According to the genera theory of
relativity, on the other hand, by application of
arbitrary substitutions of the Gauss variables x,,
X2, Xs, X, the eguations must pass over into
equations of the same form; for every transfor-
mation (not only the Lorentz transformation)
corresponds to the transition d one Gauss co-ordi-
nate system into another.

If we desire to adhere to our “old-time” three-
dimensional view of things, then we can char-
aderise the development which is being under-
gone by the fundamental idea of the generd
theory of relativity as follows. The specia theory
of relativity has reference to Galileian domains,
I.e. to those in which no gravitational field exists.
In this connection a Galileian reference-body
serves as body of reference, i.e. arigid body the
state of motion of which is so chosen that the
Galileian law of the uniform redilinear mo-
tion d “isolated” materia points holds relatively
toit.
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Certain considerations suggest that we should
refer the same Galil elan damains to non-Galileilan
reference-bodies aso. A gravitational field of a
specia kind is then present with respect to these
bodies (cf. Sedions XX and XXIII).

In gravitationa fields there ae no such things
as rigid bodies with Euclidean properties; thus
the fictitious rigid body of referenceis of no avall
in the general theory of relativity. The motion
of clocksisaso influenced by gravitationa fields,
and in such a way that a physica definition of
time which is made directly with the aid of clocks
has by no means the same degree of plausibility
asin the specia theory of relativity.

For this reason nonrigid reference-bodies are
used which are as awhole not only moving in any
way whatsoever, but which also suffer aterations
in form ad lib. during their motion. Clocks, for
which the law of motionis of any kind, however
irregular, serve for the definition of time. We
have to imagine eat o these docksfixed at apant
on the non-rigid reference-body. These clocks
satisfy only the one condition, that the “readings’
which are observed simultaneously on adjacent
clocks (in spacg differ from ead ather by an
indefinitely small amourt. This non-rigid refer-
ence-body, which might appropriately be termed
a “reference-mollusk,” is in the main equivalent
to a Gaussian four-dimensiona co-ordinate sys-
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tem chosen arbitrarily. That which gives the
“mollusk” a certain comprehensibleness as com-
pared with the Gauss co-ordinate system is the
(redly unqualified”) formal retention of the sep-
arate existence of the space co-ordinates as op-
posed to the time @-ordinate. Every point on
the mollusk is treated as a space-point, and every
material point which is at rest relatively to it as
at rest, so long as the mollusk is considered as
reference-body. The general principle of rela-
tivity requires that al these mollusks can be used
as reference-bodies with equal right and equa
success in the formulation of the general laws of
nature; the laws themselves must be quite
independent of the choice of mollusk.

The great power possesed by the generd
principle of relativity lies in the comprehensive
limitation which is impased on the laws of nature
in consequence of what we have seen abowe.

[" The word “unqualified” was correaly changed to “unjustified”
in later editions. — J.M.]
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XXIX

THE SOLUTION OF THE PROBLEM OF GRAVI-
TATION ON THE BASIS OF THE GENERAL
PRINCIPLE OF RELATIVITY

F the reader has followed all our previous
considerations, he will have no further diffi-
culty in understanding the methods leading

to the solution d the problem of gravitation.

We start off from a consideration of a Galileian
domain, i.e. adomain in which there isno gavita-
tional field relative to the Galileian reference-
body K. The behaviour of measuring-rods and
clocks with reference to K is known from the
spedad theory of relativity, likewise the behaviour
of “isolated” material points, the latter move
uniformly andin straight lines.

Now let us refer this domain to arandom Gauss
co-ordinate system or to a “mollusk” as reference-
body K'. Then with respect to K' there is a
gravitational field G (of a particular kind). We
learn the behaviour of measuring-rods and clocks
and also of fredy-moving material points with
reference to K' simply by mathematical trans-

formation. We interpret this behaviour as the
119
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behaviour of measuring-rods, clocks and materia
points under the influence of the gravitational
field G. Hereupon we introduce a hypaothesis:
that the influence of the gravitational field on
measuring-rods, clocks and fredy-moving material
points continues to take place acording to the
same laws, even in the ase when the prevailing
gravitational field is not derivable from the
Galileian spedal case, simply by means of a
transformation of co-ordinates.

The next step is to investigate the space-time
behaviour of the gravitational field G, which was
derived from the Galileian specia case simply by
transformation of the a-ordinates. This be
haviour is formulated in a law, which is aways
valid, no matter how the reference-body (mollusk)
used in the description may be dosen.

Thislaw is nat yet the general law of the gravita-
tiond field, since the gravitational field under
consideration is of a specia kind. In order to
find out the genera law-of-field of gravitation we
still require to dbtain a generaisation d the law
as found above. This can be obtained without
cgorice, however, by taking into consideration
the following demands:

(a) The required generalisation must likewise

satisfy the general postulate of relativity.

(b) If there is any matter in the domain under

consideration, only its inertial mass and
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thus acording to Sedion XV only its
energy is of importance for its effect in
exciting afield.

(c) Gravitational field and matter together
must satisfy the law of the conservation
of energy (and d impulse).

Finally, the generd principle of relativity per-
mits us to determine the influence of the gravita-
tiona field on the course of al those processes
which take placeaccording to known laws when a
gravitational field is absent, i.e. which have
already been fitted into the frame of the special
theory of relativity. In this connection we pro-
ceed in principle acording to the method which
has already been explained for measuring-rods,
clocks and fredy-moving material points.

The theory of gravitation derived in this way
from the general postulate of relativity excels
not only in its beauty; nor in removing the defect
attaching to classcd medanics which was brought
to light in Sedion XXI; nor in interpreting the
empiricd law of the euality of inertia and
gravitational mass but it has aso aready ex-
plained a result of observation in astronomy,
against which classical medhanicsis powerless

If we mnfine the goplication of the theory to
the cae where the gravitational fields can be
regarded as being weak, and in which all masses
move with resped to the co-ordinate system with
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velocities which are small compared with the
velocity of light, we then obtain as a first ap-
proximation the Newtonian theory. Thus the
|atter theory is obtained here without any particu-
lar assumption, whereas Newton had to introduce
the hypothesis that the force of attraction between
mutually attrading material points is inversely
proportional to the square of the distance between
them. If we increese the acuracy of the cdcu-
lation, deviations from the theory of Newton
make their appeaance, pradically al of which
must nevertheless escgpe the test of observation
owing to their small ness

We must draw attention here to one of these
deviations. According to Newton's theory, a
planet moves round the sun in an ellipse, which
would permanently maintain its position with
respect to the fixed stars, if we wuld dsregard
the motion of the fixed stars themselves and the
adion o the other planets under consideration.
Thus, if we orrect the observed motion of the
planets for these two influences, and if Newton’'s
theory be strictly correct, we ought to obtain
for the orbit of the planet an elipse, which is
fixed with reference to the fixed stars. This
deduction, which can be tested with geda ac
curagy, has been confirmed for al the planets
save one, with the precision that is capable of
being obtained by the delicacy of observation
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attainable at the present time. The sole ex-
ception is Mercury, the planet which lies neaest
the sun. Since the time of Leverrier, it has been
known that the elipse rresponding to the orbit
of Mercury, after it has been correded for the
influences mentioned above, is not stationary with
respect to the fixed stars, but that it rotates ex-
cedalingly slowly in the plane of the orbit and in
the sense of the orbital motion. The vaue ob-
tained for this rotary movement of the orbital
ellipse was 43 seconds of arc per century, an
amount ensured to be correct to within a few
seconds of arc. This effed can be explained by
means of classca medhanics only on the as-
sumption of hypotheses which have little proba-
bility, and which were devised solely for this
purpose.

On the basis of the general theory of relativity,
it is found that the élipse of every planet round
the sun must necessarily rotate in the manner
indicated above; that for al the planets, with
the exception of Mercury, this rotation is too
small to be detected with the delicagy of ob-
servation passible & the present time; but that
in the ase of Mercury it must amount to 43
sewnds of arc per century, aresult which is grictly
In agreement with observation.

Apart from this one, it has hitherto been paossible
to make only two deductions from the theory
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which admit of being tested by observation, to wit,
the airrvature of light rays by the gravitational
field of the sun,* and a displacement of the spedral
lines of light reaching us from large stars, as com-
pared with the corresponding lines for light pro-
duced in an analogous manner terrestrialy (i.e.
by the same kind of moleaule’). | do rot doubt
that these deductions from the theory will be
confirmed also.

! Observed by Eddington and cahers in 1919 (Cf. Appendix
1)

[ The word “molecule” was corredly changed to “atom” in later
editions. Cf. Appendix Ill, pg. 157. — JM ]
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PART 111

CONSIDERATIONS ON THE UNIVERSE
AS A WHOLE

XXX

COSMOLOGICAL DIFFICULTIES OF NEWTON'S
THEORY

PART from the difficulty discussed in Sec-
tion XXI, there is a second fundamental
difficulty attending classical celestial me-

chanics, which, to the best of my knowledge,
was first discussd in detail by the astronomer
Sediger. If we ponder over the question as to
how the universe, considered as a whole, isto be
regarded, the first answer that suggests itself to
us is surely this. As regards gace (and time)
the universe is infinite. There are stars every-
where, so that the density of matter, although
very variable in detail, is nevertheless on the
average everywhere the same. In other words:
However far we might travel through space we
should find everywhere an attenuated swarm of
fixed stars of approximately the same kind and
density.
125
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This view is not in harmony with the theory of
Newton. The latter theory rather requires that
the universe should have akind of centrein which
the density of the stars is a maximum, and that
as we proceed ouwards from this centre the
group-density of the stars hould diminish, until
findly, at great distances, it is siccesded by an
infinite region d emptiness. The stellar universe
ought to be afinite idand in the infinite ocean of
space?

This conceptionisin itself not very satisfactory.
It is still less satisfactory because it |eads to the
result that the light emitted by the stars and aso
individual stars of the stellar system are per-
petually passing out into infinite space never
to return, and without ever again coming into
interaction with cother objects of nature. Such
a finite materia universe would be destined
to become gradually but systematicdly impov-
erished.

! Proof. — According to the theory of Newton, the number of
“lines of force” which come from infinity and terminate in a mass
m is proportional to the mass m. If, on the average, the mass-den-
sity p, is constant throughout the universe, then a sphere of volume
V will enclose the arerage mass pV. Thus the number of lines of
force pasdng through the surfaceF of the sphere into its interior is
proportional to p,V. For unit area of the surface of the sphere the
number of lines of force which enters the sphere is thus propartional

to po%* or p,R. Hence the intensity of the field at the surface would

ultimately become infinite with increasing radius R of the sphere,
whichisimpaossible.

[* Po%_J-M-]
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In order to escape this dilemma, Sediger sug-
gested a modification of Newton's law, in which
he assumes that for great distances the force of
attraction between two masses diminishes more
rapidly than would result from the inverse square
law. In this way it is possible for the mean
density of matter to be mnstant everywhere, even
to infinity, without infinitely large gravitational
fields being poduced. We thus free ourselves
from the distasteful conception that the material
universe ought to possess something of the nature
of a entre. Of course we purchase our emancipa-
tion from the fundamental difficulties mentioned,
at the cost of a modification and complication of
Newton’'s law which has neither empiricd nor
theoretical foundation. We can imagine innum-
erable laws which would serve the same purpose,
without our being able to state areason why one
of them is to be preferred to the others; for any
one of these laws would be founded just as little
on more genera theoretical principles as is the
law of Newton.
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XXX

THE POSSBILITY OF A “FINITE” AND YET
“UNBOUNDED” UNIVERSE

UT speculations on the structure of the
universe dso move in qute another direc-
tion. The development of non-Euclidean

geometry led to the reagnition d the fad,
that we @n cast doubt on the infiniteness of
our spacewithout coming into conflict with the
laws of thought or with experience (Riemann,
Helmhaltz). These questions have aready been
treated in detail and with unsurpassable lucidity
by Helmhaltz and Poincaré, whereas | can only
touch on them briefly here.

In the first place we imagine an existence in
two-dimensional space Flat beings with flat
implements, and in particular flat rigid measuring-
rods, are free to move in a plane. For them
nothing exists outside of this plane: that which
they observe to happen to themselves and to their
flat “things’ is the all-inclusive reality of their
plane. In particular, the constructions of plane
Euclidean geometry can be caried out by means

of the rods, e.g. the lattice @nstruction, con-
128
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sidered in Section XXIV. In contrast to ours,
the universe of these beings is two-dimensional;
but, like ours, it extends to infinity. In ther
universe there is room for an infinite number of
identica sguares made up o rods, i.e. its volume
(surfacg is infinite. If these beings say their
universe is “plane,” there is $nse in the state-
ment, because they mean that they can perform
the @nstructions of plane Euclidean geometry
with their rods. In this conredion the indi-
vidual rods always represent the same distance,
independently of their position.

Let us consider now a second two-dimensiona
existence, but this time on a spherical surface
instead of on a plane. The flat beings with their
measuring-rods and aher objeds fit exactly on
this surface ad they are unable to leave it. Their
whoale universe of observation extends exclusvely
over the surfaceof the sphere. Are these beings
able to regard the geometry of their universe as
being plane geometry and their rods withal as
the redisation d “distance€’? They cannot do
this. For if they attempt to redise a straight
line, they will obtain a arve, which we “three
dimensional beings’ designate & a great circle,
I.e. a self-contained line of definite finite length,
which can be measured up by means of a measur-
ing-rod. Similarly, this universe has a finite
area that can be compared with the aea of a
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square nstructed with rods. The great charm
resulting from this consideration lies in the
recognition of the fact that the universe of these
beingsisfinite and yet has nolimits.

But the spherical-surface beings do na need
to go on aworld-tour in arder to perceve that they
are not living in a Euclidean wniverse. They can
convince themselves of this on every part of their
“world,” provided they do rot use too smal a
piece of it. Starting from a point, they draw
“straight lines” (arcs of circles as judged in
threedimensiona space of equal length in all
diredions. They will cdl the line joining the
free ends of these lines a “circle.” For a plane
surface the ratio of the circumference of a drcle
to its diameter, both lengths being measured with
the same rod, is, according to Euclidean geometry
of the plane, equal to a wnstant value i, which is
independent of the diameter of the circle. On
their spherical surface our flat beings would find
for thisratio the value

[T
SII’](R)
r 1)
()
I.e. a smaler value than m, the difference being
the more considerable, the greater is the radius

of the circle in comparison with the radius R of
the “world-sphere.” By means of this relation

Tt
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the spherical beings can determine the radius of
their universe (“world’), even when only a
relatively small part of their world-sphere is
avalable for their measurements. But if this
part is very small indeed, they will no longer be
able to demonstrate that they are on a sphericd
“world” and not on a Euclidean plane, for a
smal part of a sphericd surfacediffers ony dightly
from a pieceof aplane of the same size

Thus if the spherical-surface beings are living
on a planet of which the solar system occupies
only a negligibly small part of the sphericd
universe, they have no means of determining
whether they areliving in afinite or in an infinite
universe, because the “piece of universe” to
which they have acess is in both cases prac-
tically plane, or Euclidean. It follows diredly
from this discussion, that for our sphere-beings
the circumference of a drcle first increases with
the radius until the “circumference of the uni-
verse” is reached, and that it thenceforward
gradually deaeases to zero for till further in-
creasing values of the radius. During this process
the aeaof the circle continues to increase more
and more, until finaly it becomes equal to the
total areaof the whae “world-sphere.”

Perhaps the reader will wonder why we have
placed our “beings’ on a sphere rather than on
another closed surface But this choice has its
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justification in the fact that, of all closed sur-
faces, the sphere is unique in possessng the
property that al points on it are equivaent. |
admit that the ratio of the drcumference c of a
circleto itsradius r depends on r, but for a given
value of r it is the same for al points of the
“world-sphere”; in aher words, the “world-
sphere” isa*“surfaceof constant curvature.”

To this two-dimensional sphere-universe there
Is a three-dimensional analogy, namely, the
threedimensional spherical spacewhich was dis-
covered by Riemann. Its points are likewise all
equivalent. It possesses a finite volume, which
Is determined by its “radius’ (2°R?). Is it pos-
sible to imagine a spherical space? To imagine
a space means nothing else than that we imagine
an epitome of our “space” perience i.e. of
experience that we can have in the movement of
“rigid” bodies. In this sense we can imagine
aspherical space.

Suppose we draw lines or stretch strings in all
diredions from a point, and mark off from ead
of these the distance r with a measuring-rod.
All the free exd-points of these lengths lie on a
spherical surface. We @n specially measure up
the aea(F) of this surface by means of a square
made up of measuring-rods. If the universe is
Euclidean, then F = 4mr2; if it is spherical, then
F isawayslessthan 4mr?. With increasing values
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of r, F increases from zero up to a maximum value
which is determined by the “world-radius,” but
for still further increasing values of r, the aea
gradually diminishes to zero. At first, the straight
lines which radiate from the starting point diverge
farther and farther from one another, but later
they approadh each aher, and finadly they run
together again at a “counter-point” to the start-
ing point. Under such conditions they have
traversed the whole spherical space It is easly
seen that the threedimensiona spherical space
Is quite analogous to the two-dimensional sphericd
surface It is finite (i.e. of finite volume), and
has no bounds.

It may be mentioned that there is yet another
kind of curved space: “elliptical space” It can
be regarded as a airved space in which the two
“counter-points’ are identicd (indistinguishable
from eat ather). An ellipticd universe can thus
be considered to some extent as a curved universe
possessing central symmetry.

It follows from what has been said, that closed
spaces without limits are conceivable. From
amongst these, the spherical space (and the dl-
liptical) excds in its smplicity, since dl pants on
it are equivalent. As a result of this discussion,
amost interesting question arises for astronomers
and physicists, and that is whether the universe
in which we live is infinite, or whether it is finite
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in the manner of the spherical universe. Our ex-
perienceis far from being sufficient to enable us
to answer this question. But the general theory
of relativity permits of our answering it with a
moderate degree of certainty, and in this con-
nection the difficulty mentioned in Section XXX
findsits olution.
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XXX

THE STRUCTURE OF SPACE ACCORDING TO
THE GENERAL THEORY OF RELATIVITY

CCORDING to the generad theory of
A relativity, the geometrical properties of

space ae nat independent, but they are
determined by matter. Thus we can draw con
clusons about the geometrical structure of the
universe only if we base our considerations on
the state of the matter as being something that
Is known. We know from experience that, for a
suitably chosen co-ordinate system, the velocities
of the stars are small as compared with the
velocity of transmisson of light. We can thus
as a rough approximation arrive at a conclusion
as to the nature of the universe & a whole, if
we treat the matter as being at rest.

We drealy know from our previous discussion
that the behaviour of measuring-rods and clocks
Is influenced by gravitationa fields, i.e. by the
distribution of matter. This in itself is sufficient
to exclude the posshility of the exact validity of
Euclidean geometry in our universe. But it is

concelvable that our universe differs only slightly
135
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from a Euclidean one, and this nation seems all
the more probable, since cdculations show that
the metrics of surrounding space is influenced
only to an exceedingly small extent by masses
even o the magnitude of our sun. We might
Imagine that, as regards geometry, our universe
behaves analogously to a surface which is ir-
regularly curved in its individua parts, but which
nowhere departs appredably from a plane: some-
thing like the rippled surface of a lake. Such a
universe might fittingly be cdled a quasi-Eu-
clidean universe. As regards its spaceit would
be infinite. But calculation shows that in a
quasi-Euclidean unverse the average density of
matter would necaessarily be nil. Thus such a
universe could not be inhabited by matter every-
where; it would present to us that unsatisfadory
picture which we portrayed in Section XXX .

If we ae to have in the universe an average
density of matter which differs from zero, how-
ever smal may be that difference, then the
universe annot be quasi-Euclidean. On the con-
trary, the results of cdculation indicate that if
matter be distributed uniformly, the universe
would necessarily be spherical (or dliptica).
Sincein redlity the detail ed distribution of matter
Is not uniform, the red universe will deviate in
individual parts from the spherical, i.e. the uni-
verse will be quasi-spherical. But it will be


http://books.google.com/books?id=n8QKAAAAIAAJ&pg=RA1-PA136

THE STRUCTURE OF SPACE 137

neassarily finite. In fad, the theory supplies
us with a simple connection * between the space-
expanse of the universe and the average density
of matter in it.

Y For the “radius’ R of the universe we obtain the eguation

R2 :i
Kp

The use of the C.G.S. system in this equation gives % =108[10%;

p isthe average density of the matter.
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SIMPLE DERIVATION OF THE LORENTZ
TRANSFORMATION [SUPPLEMENTARY TO SEC-
TION XI]

OR the relative orientation of the co-ordi-
F nate systems indicaed in Fig. 2, the
x-axes of both systems permanently co-
incide. In the present case we can divide the
problem into parts by considering first only
events which are locdised on the x-axis. Any
such event is represented with respect to the co-
ordinate system K by the abscissa x and the
time t, and with resped to the system K' by the
abscissa X' and the time t'. We require to find
X and t' when x and t are given.
A light-signal, which is proceeding along the
positive axis of X, is transmitted according to the
equation

or

Since the same light-signal has to be transmitted

relative to K' with the velocity c, the propagation
139
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relative to the system K' will be represented by
the analogous formula
X-ct'=0 . . ... ... (2).
Those spacetime points (events) which satisfy
(1) must aso satisfy (2). Obvioudly this will be
the cae when the relation
X —-ct)y=A(x-ct) . . . . . . (©)]
is fulfilled in general, where A indicaes a wn-
stant; for, according to (3), the disappeaance
of (x - ct) involves the disappearance of (X' - ct').
If we goply quite simil ar considerationsto light
rays which are being transmitted along the
negative x-axis, we obtain the condition
X +ct)y=p(x+ct) . . . . .. (4).
By adding (or subtrading) equations (3) and (4),
and introducing for convenience the constants a
and b in paceof the mnstants A and u where

azhri
and
b= )\;“’
2
we obtain the equations
X' = ax — bct
G oot (5).

We should thus have the solution of our prob-
lem, if the constants a and b were known. These
result from the foll owing discussion.

For the origin of K' we have permanently
X' =0, and hence according to the first of the
equations (5)
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x=2C¢
a
If we cdl v the velocity with which the origin
of K'ismoving relative to K, we then have

bc

The same value v can be obtained from equa-
tions (5), if we calculate the velocity of another
point of K' relative to K, or the velocity (di-
rected towards the negative x-axis) of a point of
K with respect to K'. In short, we @an designate
v asthe relative velocity of the two systems.

Furthermore, the principle of relativity teaches
us that, as judged from K, the length of a unit
measuring-rod which is at rest with reference to
K' must be exactly the same & the length, as
judged from K', of a unit measuring-rod which
Is at rest relative to K. In arder to see how the
points of the x'-axis appea as viewed from K,
we only require to take a*“snapshot” of K' from
K; this means that we have to insert a particular
value of t (time of K), e.q.” t = 0. For this value of
t we then dotain from the first of the equations (5)

X = ax.

Two points of the x'-axis which are separated
by the distance Ax' =1¥ when measured in the
K' system are thus separated in our instantaneous
photograph by the distance

[ tion—JM] [Meg.—JIM] Fx=1—JIM]
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But if the snapshat be taken from K' (t' = 0),
and if we eliminate t from the equations (5),
taking into aacount the expression (6), we

obtain
X'=a (1 - \C/—z)x

From this we @nclude that two points on the
x-axis and separated by the distance 1 (relative to
K) will be represented on our snapshot by the
distance

_ V2
AX' = a(]_—?) ...... (7a).

But from what has been said, the two snap-
shots must be identical; hence Ax in (7) must
be equal to AX' in (7a), so that we obtain

The guations (6) and (7b) determine the wn-
stants a and b. By inserting the values of these
constants in (5), we obtain the first and the
fourth of the equations given in Section XI.
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Thus we have obtained the Lorentz trans-
formation for events on the x-axis. It satisfies
the condition

X2-ct'?2=x2-ct> .. .... (8a).

The extension of this result, to include events
which take placeoutside the x-axis, is obtained by
retaining equations (8) and supplementing them
by the relations

LANE4 = DUV 9).
In this way we satisfy the postulate of the con-
stancy of the velocity of light in vacuo for rays
of light of arbitrary direction, both for the system
K and for the system K'. This may be shown in
the following manner.

We suppose alight-signal sent out from the
origin of K at the time t=0. It will be propa-
gated according to the equation

r=,x*+y?+2z%> =ct,
or, if we square this equation, according to the
equation

X2+y2+72-c%?2=0 ... .. (20).

It isrequired by the law of propagation o light,
in conjunction with the postulate of relativity,
that the transmission of the signa in question
should take place—as judged from K'—in
acmordance with the corresponding formula

r=ct
or,
X2+y2+z2-ct'?2=0 ... .(10a).
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In order that equation (10a) may be a ©®nsequence
of equation (10), we must have
X'?2+y?+2z?%-c'?2=g(x*+y*+2z2-c%?) (12).

Since @uation (8a) must hold for points on the
x-axis, we thus have o = 1. It is easly seen
that the Lorentz transformation really satisfies
equation (11) for o =1; for (11) is a mnsequence
of (8a) and (9), and hence dso o (8) and (9).
We have thus derived the Lorentz transformation.

The Lorentz transformation represented by
(8) and (9) till requires to be generalised. Ob-
vioudly it is immaterial whether the axes of K'
be chosen so that they are spatially parallel to
those of K. It is aso not essential that the
velocity of trandation of K' with respect to K
should be in the direction of the x-axis. A ssimple
consideration shows that we ae able to construct
the Lorentz transformation in this general sense
from two kinds of transformations, viz. from
Lorentz transformations in the special sense and
from purely spatia transformations, which cor-
responds to the replacement of the rectangular
co-ordinate system by a new system with its
axes pointing in other directions.

Mathematically, we can characterise the gen-
eralised Lorentz transformation thus:

It expreses X, Y, Z, t', in terms of linear
homogeneous functions of x, Y, z, t, of such akind
that the relation
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X2 +y2+z%-ct'?=x*+y*+72-c?. (11a)

Is stisfied identicaly. That is to say: If we
substitute their expressionsin x, y, z t, in place of
X,VY, Z, t', on the left-hand side, then the left-
hand side of (11a) agrees with the right-hand side.
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MINKOWSKI'S FOUR — DIMENSIONAL SPACE
(“W ORLD”) [SUPPLEMENTARY TO SECTION XVII]

E can charaderise the Lorentz trans-
formation still more simply if we in-

troduce the imaginary ./ -1[ct in place

of t, as time-variable. If, in accordance with
this, we insert

X = X

XK =Y

Xs =2

Xy = \/Tl Let,
and similarly for the acented system K', then the
condition which is identicdly satisfied by the
transformation can be expressed thus:

X 2HX 2K 2+ X, 2 = X2+ X2+ X2+ X2 (12).

That is, by the dore-mentioned choice of “co-
ordinates’ (11a) is transformed into this equation.
We seefrom (12) that the imaginary time -
ordinate X, enters into the condition of trans-
formation in exactly the same way as the space
co-ordinates x;, X, Xs. It is due to this fact that,

acording to the theory of relativity, the “time”
146
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X, enters into natural laws in the same form as
the spaceco-ordinates X, X;, Xa.

A four-dimensional continuum described by the
“co-ordinates’” X, X, X, X, was caled “world”
by Minkowski, who also termed a point-event a
“world-point.” From a “happening” in three
dimensional space, physics becomes, as it were,
an “existence” in the four-dimensional “world.”

This four-dimensional “world” beas a dose
similarity to the threedimensiona “space” of
(Euclidean) analytical geometry. If we intro-
duce into the latter a new Cartesian co-ordinate
system (X5, X2, X'3) with the same origin, then
X1, X5, X3, are linea homogeneous functions of
X1, X2, X3, Which identicdly satisfy the equation

'2 12 12 — y?2 2 2
X' 2+ X, 2+ Xy 2 = %2+ X2+ X2

The analogy with (12) is a mmplete one. We
can regard Minkowski’s “world” in a formal
manner as a four-dimensional Euclidean space
(with imaginary time a-ordinate); the Lorentz
transformation corresponds to a “rotation” of
the @-ordinate system in the four-dimensiona
“world.”
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THE EXPERIMENTAL CONFIRMATION OF THE
GENERAL THEORY OF RELATIVITY

ROM a systematic theoretical point of
view, we may imagine the process of
evolution of an empirical science to be a

continuous process of induction. Theories are
evolved, and are expressed in short compass as
statements of a large number of individual ob-
servations in the form of empiricd laws, from
which the genera laws can be ascertained by
comparison. Regarded in this way, the develop-
ment of a science bears some resemblance to the
compilation of a dassified catalogue. It is, as
it were, apurely empirical enterprise.

But this point of view by no means embraces
the whale of the actual process for it slurs over
the important part played by intuition and
deductive thought in the development of an
exact science As 0n as a science has emerged
from its initia stages, theoretica advances are
no longer achieved merely by a processof arrange-
ment. Guided by empirica data, the investigator

rather develops a system of thought which, in
148
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generd, is built up logically from a small number
of fundamental assumptions, the so-call ed axioms.
We cdl such a system of thought a theory. The
theory finds the justification for its existence in
the fact that it correlates a large number of single
observations, and it is just here that the “truth”
of the theory lies.

Correspording to the same complex of empiricd
data, there may be severa theories, which dffer
from one another to a mnsiderable extent. But
as regards the deductions from the theories which
are cpable of being tested, the agreament be-
tween the theories may be so complete, that it
beomes difficult to find such deductions in which
the two theories differ from ead ather. As an
example, a cae of general interest is available in
the province of biology, in the Darwinian theory
of the development of species by selection in
the struggle for existence, and in the theory of
development which is based on the hypothesis
of the hereditary transmission d acquired char-
aders.

We have aother instance of far-reaching
agreanent between the deductions from two
theories in Newtonian mechanics on the one hand,
and the general theory of relativity on the other.
This agreement goes 9 far, that up to the present
we have been able to find only a few deductions
from the general theory of relativity which are
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cgpable of investigation, and to which the physics
of pre-relativity days does not aso lead, and
this despite the profound difference in the funda-
mental assumptions of the two theories. In
what follows, we shall again consider these im-
portant deductions, and we shall also dscuss
the ampirical evidence appertaining to them
which has hitherto been obtained.

(@) MOTION OF THE PERIHELION OF MERCURY

Acoording to Newtonian medhanics and New-
ton'slaw of gravitation, a planet which isrevolving
round the sun would describe an dlipse round the
latter, or, more arredly, round the common
centre of gravity of the sun and the planet. In
such a system, the sun, or the common centre of
gravity, liesin ore of the foci of the orbital ellipse
in such a manner that, in the course of a planet-
yea, the distance sun-planet grows from a mini-
mum to a maximum, and then deaeases again
to a minimum. If instead of Newton's lawv we
insert a somewhat different law of attraction into
the alculation, we find that, aceording to this
new law, the motion would still take placein such
a manner that the distance sun-planet exhibits
periodic variations; but in this case the angle
described by the line joining sun and planet
during such a period (from perihelion — closest
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proximity to the sun—to perihelion) would
differ from 36C°. The line of the orbit would not
then be aclosed one, but in the murse of time
it would fill up an annular part of the orbital
plane, viz. between the circle of least and the
circle of greaest distance of the planet from
the sun.

Acoording dso to the general theory of relativity,
which dffers of course from the theory of Newton,
a small variation from the Newton-Kepler mo-
tion of a planet in its orbit should take place, and
in such a way, that the angle described by the
radius sun-planet between ore perihelion and the
next should exceed that corresponding to one
complete revolution by an amount given by

4+ 24rra’
T2c2(1-€?)’

(N.B. — One complete revolution corresponds
to the angle 2m in the @solute angular measure
customary in physics, and the @ove expression
gives the anount by which the radius sun-planet
exceeds this angle during the interval between
one perihelion and the next.) In this expression
a represents the major semi-axis of the dlipse,
e its ecantricity, ¢ the velocity of light, and T
the period of revolution of the planet. Our
result may also be stated as follows. According
to the genera theory of relativity, the major axis
of the dlipse rotates round the sun in the same
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sense as the orbital motion d the planet. Theory
requires that this rotation should amount to 43
seconds of arc per century for the planet Mercury,
but for the other planets of our solar system its
magnitude should be so small that it would
neaessarily escgpe detection.”

In point of fad, astronomers have found that
the theory of Newton does not suffice to cal-
culate the observed motion d Mercury with an
exactness corresponding to that of the delicagy
of observation attainable at the present time.
After taking accourt of al the disturbing in-
fluences exerted on Mercury by the remaining
planets, it was found (Leverrier — 1859 — and
Newcomb — 1895) that an unexplained perihelial
movement of the orbit of Mercury remained over,
the amount of which does not differ sensibly from
the aove-mentioned + 43 seconds of arc per
century. The uncertainty of the empiricd result
amounts to afew seconds only.

(b) DEFLECTION OF LIGHT BY A
GRAVITATIONAL FIELD

In Section XXII it has been aready mentioned
that, according to the general theory of relativity,
a ray of light will experience a arvature of its

! Espedally since the next planet Venus has an orbit that is
amost an exad circle, which makes it more difficult to locae the
perihelion with predsion.
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path when passng through a gravitational field,
this curvature being similar to that experienced
by the path of a body which is projeded through
a gravitational field. As a result of this theory,
we should expect that a ray of light which is
passng close to a heavenly body would be deviated
towards the latter. For a ray of light which
passes the sun at a distance of A sun-radii from
its centre, the angle of deflection (o) should
amount to

q= 1 7secondf arc

A :

It may be alded that, according to the theory,
half of this deflection is produced by the New-
tonian field of attraction d the

sun, and the other half by the 4’0
geometricd modficdion (“curva L
ture”) of space cased by the sun. o
This result admits of an experi- !/
mental test by means of the . a/

photographic registration of stars Y
during a total eclipse of the sun. D
The only reason why we must v
wait for atotal eclipseisbecause
at every other time the amos-

phere is © strongly illuminated

by the light from the sun that the stars stuated
nea the sun’'s disc ae invisible. The predicted
eff ect can be seen clearly from the acompanying

F16. 5.


http://books.google.com/books?id=n8QKAAAAIAAJ&pg=RA1-PA153

154 APPENDIX [l

diagram. If the sun (S were naot present, a star
which is practicaly infinitely distant would be
seen in the diredion D,, as observed from the
eath. But as a consequence of the deflection of
light from the star by the sun, the star will be
seen in thedirection D,, i.e. at a somewhat greater
distance from the centre of the sun than corre-
spondsto itsred position.

In practice, the question is tested in the fol-
lowing way. The stars in the neighbourhood of
the sun are phaographed during a solar eclipse.

In addition, a second photograph of the same
stars is taken when the sun is situated at another
position in the sky, i.e. a few months earlier or
later. As compared with the standard photograph,
the positions of the stars on the edipse-photograph
ought to appea displaced radially outwards
(away from the centre of the sun) by an amount
corresponding to the angle a.

We ae indebted to the Royal Society and to
the Royal Astronomicd Society for the investiga-
tion of this important deduction. Undaunted
by the war and by difficulties of both a materia
and a psychologicd nature aroused by the war,
these societies equipped two expeditions— to
Sobral (Brazil) and to the island of Principe
(West Africa) —and sent several of Britain's
most cd ebrated astronomers (Eddington, Cotting-
ham, Crommelin, Davidson), in order to obtain
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photographs of the solar edipse of 29%h May,
1919. The relative discrepancies to be expeded
between the stellar photographs obtained duing
the eclipse and the mparison photographs
amounted to a few hundredths of a millimetre
only. Thus great accuracy was necessary in
making the adjustments required for the taking
of the photographs, and in their subsequent
measurement.

The results of the measurements confirmed the
theory in a thoroughly satisfactory manner. The
redangular comporents of the observed and of
the calculated deviations of the stars (in seconds
of arc) are set forth in the following table of
results:

Number of the First Co-ordinate. = SecondCo-ordinate.
Star. Observed. Calculated Observed. Calculated

11 . . - 019 - 022 + 016 + 002

5 . . + 029 + 031 - 046 - 043

4 . + 011 + 010 + 083 + 074

3 . . + 020 + 012 + 100 + 087

6 + 0-10 + 0:04 + 057 + 040

10 - 008 + 009 + 035 + 032

2 + 095 + 085 - 027 - 009

(C) DISALACEMENT OF SPECTRAL LINES
TOWARDS THE RED

In Section XXIII it has been shown that in a
system K' which is in rotation with regard to a
Galileian system K, clocks of identical construc-


http://books.google.com/books?id=n8QKAAAAIAAJ&pg=RA1-PA155

156 APPENDIX [l

tion, and which are considered at rest with respect
to the rotating reference-body, go at rates which
are dependent on the positions of the docks. We
shall now examine this dependence quantitatively.
A clock, which is stuated at a distance r from the
centre of the disc, has a velocity relative to K
which isgiven by
V=ox,

where w represents the” velocity of rotation of the
disc K' with respect to K. If v, represents the
number of ticks of the dock per unit time (“rate”
of the clock) relative to K when the clock is at
rest, then the “rate” of the clock (v) when it is
moving relative to K with avelocity v, but at rest
with resped to the disc, will, in aacordance with
Sedion XII, be given by

V2
% =V01’ 1_0—2,

or with sufficient accuracy by

V2
Vv =V0( 1_%?)

This expresson may also be stated in the fol-

lowing form:
1 wzrz)
V=V (1—— .
0 c? 2

If we represent the difference of potential of the
centrifugal force between the position of the dock
and the centre of the disc by ¢ i.e. the work,

[ Theword “angular” was inserted here in later editions. — J.M.]
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considered negatively, which must be performed
on the unit of mass against the centrifugal force
in order to transport it from the position of the
clock onthe rotating disc to the centre of the disc,
then we have

w?r?
-

(p:

From thisit follows that

v =v0(1+01;).

In the first place, we seefrom this expression that
two clocks of identicd construction will go at
different rates when situated at diff erent distances
from the centre of the disc. This result is aso
valid from the standpoint of an observer who is
rotating with the disc.

Now, as judged from the disc, the latter isin a
gravitational field of potential ¢ hence the result
we have obtained will hold quite generally for
gravitational fields. Furthermore, we can regard
an atom which is emitting spectral lines as a
clock, so that the following statement will
hold:

An atom absorbs or emits light of a frequency
which is dependent on the potential of the gravita-
tional field in which it is Situated.

The frequency of an atom situated on the
surface of a heavenly body will be somewhat
less than the frequency of an atom of the same
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element which is situated in free space(or on the
surfaceof asmaller celestial body).

Now ¢ = -K ¥ where K is Newton's constant of

gravitation, and M is the mass of the heavenly

body. Thus a displacement towards the red ought

to take place for spedra lines produced at the

surfaceof stars as compared with the spectral lines

of the same dement produced at the surface of

the earth, the amount of this displacanent being
Vo=V _K M

Vo cr’

For the sun, the displacement towards the red
predicted by theory amounts to about two mil-
lionths of the wave-length. A trustworthy cd-
culation is not possible in the case of the stars,
because in general neither the mass M nor the
radiusr is known.

It is an open question whether or nat this effed
exists, and at the present time astronomers are
working with great zed towards the solution.
Owing to the small nessof the dfect in the case of
the sun, it is difficult to form an opinion as to its
existence Whereas Grebe and Badem (Bonn),
as a result of their own measurements and those
of Evershed and Schwarzschild on the gyanogen
bands, have placed the eistence of the effect
almost beyond doubt, other investigators, par-
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ticularly St. John, have been led to the opposite
opinionin consequence of their measurements.

Mean dsplacements of lines towards the less
refrangible end of the spectrum are certainly
revedled by statistical investigations of the fixed
stars; but up to the present the examination of
the available data does not alow of any definite
decison bkeing arrived at, as to whether or not
these displacements are to be referred in redity
to the dfect of gravitation. The results of ob-
servation have been collected together, and ds
cussed in detail from the standpoint of the ques-
tion which has been engaging ou attention here,
in apaper by E. Freundlich entitled “Zur Prifung
der allgemeinen Relativitdts-Theorie” (Die Na-
turwissenschaften, 1919, No. 35, p. 520: Julius
Springer, Berlin).

At al events, adefinite deasionwill be reached
during the next few yeas. If the displacement
of spectra lines towards the red by the gravita-
tiona potentia does not exist, then the general
theory of relativity will be untenable. On the
other hand, if the cuse of the displacement of
spectral lines be definitely traced to the gravita-
tiona patential, then the study of this displace-
ment will furnish us with important information
as to the massof the heavenly bodies.
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