Computer Assisted
Language Learning

Program Structure
and
Principles

Edited
by
Keith Cameron
University of Exeter

intellect books

RN Blackwell Scientific Publications Ltd
)N Osney Mead, Oxford OX2 OFL

81
VII

TOWARDS AN INTELLIGENT SYNTAX CHECKER

J.E.Galletly and C.W.Bulcher, with J.Lim How

University of Buckingham

This chapter contains two principal parts : the first aims to present an extremely
wide overview of the directions in which we feel Computer Assisted Language Learn-
ing should perhaps be moving in the future; and the second, to report on a small
project in this field carried out at Buckingham, using PROLOG on an Orion su-
per/minicomputer, and designed to check a small area of French syntax. While it
would be temerarious to claim that this project, of a very limited scope, is any sort
of real pointer to the future, we do feel that certain of its unconventional aspects
may indicate a possibility for new lines of research.

1. The Nezt Generation: What Future for CALL?

Taking the widest of overviews, it is possible to argue that the processing of natural
language by computers, and, with it, CALL, is at present at a crossroads. It is our
feeling that the various initiatives within the subject, and the various constraints
without, whether in hardware, finance, or public expectations, have reached a ‘cusp
point’. It will, in our view, either all tend to run out of steam or else begin finally
to make a number of major breakthroughs.

On many levels, CALL may be considered to have existed long enough now to
have had the chance to acquire a clear modus vivendi. Whatever the vicissitudes
of funding at the moment, many UK universities have sufficient numbers of semi-
dedicated machines, in most cases Acorn BBCs, for normal-sized teaching groups
to gain individual hands-on experience. Within the particular field of French, there
are several score programs available for use on these machines. A very broad cat-
egorisation of them might consist of saying that one major area is demonstration
and testing of simple grammatical points within the framework of multiple choice
or correct /incorrect question/answer sessions. The other main area is more or less
based on games: for instance, anagrams, cloze type exercises, or adventure type
situations, where, if the situation itself may be relatively open-ended, the language

82 Computer Assisted Language Learning

elements themselves are again comparatively limited.

Programs for language teaching are not, however, limited to language teaching
programs. Essay writing may be assisted by use of word processing, with or with-
out spell-checkers, and this often leads to considerable gains in both accuracy and
creativity. The teaching of translation, in establishments where this is considered a
constructive activity, is greatly enhanced when compared with the model, or rather
counter-model, of machine translation. More generally, any activity at all on a
computer, whether or not specifically designed for teaching and/or language pur-
poses, may well contribute to language use: for instance constrained or open-ended
communication with Minitel services or other machine users; or indeed any activity

whatsoever with computers which provides a pretext for discussion in the foreign
language concerned.

The potential benefits of all these methods are indisputable. The main one,
from the all important view of the student her/himself, is that the (micro-)ecomputer
normally provides immediate, individual, uncritical, and unambiguous feedback
about some aspect of language performance. Whereas human views on language
are often ill informed, evasive, contradictory, or even wrong, the mere fact of being
informed by the machine leads the student to believe that error and obscurity are
minimised, if only because of the process of formalisation, and s/he is often right.

Nevertheless, we believe that many of the existing initiatives may well prove dif-
ficult to sustain. One of the problems is that of the commercial world outside. The
educational market represents perhaps 1% of the total national market for hardware
and software, and educational software hardly crosses national boundaries at all.
The result, then, is that the business world, with which students will increasingly
be making comparisons, is apparently in a better position than educational estal-
lishments to produce sophisticated and well presented products within a minimal
lapse of time. Another problem, in the UK at least, is that of standards. Until
now the ipso facto standard provided by the BBC machines, at least in language
departments, has proved an inestimable advantage for communication, despite the
limited memory capacity of these venerable devices. In our view, the future will
however be marked by a period of competition between even the Archimedes, with
its capacity to operate on PC-DOS, and pure IBM compatible micros.

But the final problem is that of the very methodology, and this, we believe, is
where the next few years may well prove crucial. It would seem probable that the
degree of complexity of language ‘processed’ by computers will increase markedly.
The evidence from other areas of almost quantum leaps is here indicative. After

Towards an Intelligent Syntax Checker 83

draughts, where a computer was of world champion level as early as 1959 (1),
microcomputers have, after many false starts, reached average club level at chess,
can prove theorems in geometry, can do questions from IQ) tests, In other words,
some element of intelligence has convincingly been demonstrated, often even on
the humble micro, and the severest critics have thus been forced to repeatedly
reduce the area where ‘a mere machine will never be as good as a human being’.
Again, from a slightly different angle, expert systems, representing the transcription
of human expertise in such subjects as medicine or share dealing, demonstrate
behaviour comparable in some respects to that of humans. This remains true even
if the methods employed are often the severest of short cuts, with the inevitable
consequences of limited areas of competence and of lack of flexibility.

The implications for language are inescapable. Despite the elusiveness of many
aspects of the subject, the amount of non-trivial processing of natural language
will increase. At the same time, the commercinl influence, if only on operating
systems or programming languages, will become more and more important. In this
perspective, it is impossible to overestimate the importance of word processing.
Of course, the computing implementation of present day achievements cannot be
considered especially difficult (and one can therefore legitimately ask why, like the
walkman, they took so long to be introduced in practical form). But this lack
of computing complexity, although it has led many ‘pure’ computer specialists to
dismiss the whole area, probably has little to do with its real potential, which would
scem very large indeed. It is our view then that, despite the extra impetus provided
by ‘desk top publishing’, the full effect on many practical areas of even present
stages of text processing is still to be felt. Sir Alan Peacock, for instance, has
emphasised the extent to which the work of government committees is beginning
to be transformed (2); and some language teachers, to bring the subject closer to

home, are just beginning to assess the practical and theoretical consequences of this
mini-revolution.

As one example, should spelling be taught at all in cases where much of the
donkey work can be done by machines? Again, translations and essays, etc., are
to be carried out by the student without any external help, goes the unwritten
rule, but does this apply to help from a mere computer? The question is especially
crucial in those universities where traditional, 3-hour examinations are not the only
method of evaluation, where, as a consequence, a rich enough student may improve
‘take home’ work by artificial means. But the problem is not very far away from the
examination hall either. Anyone who participated in the incoherent and anguished

(1) See Butcher, H.J., (1968), Human Intelligence: Its Nature and Assessment, p.133.

(2) In an address at the University of Buckingham, “The Future of Broadcasting”, May
1987.

84 Computer Assisted Language Learning

debate about the use of caleulators in mathematics and science will understand

that the problem of the use of portable language processors is urgent, and should
be discussed without delay.

Such, then, was one element of our thinking about a year ago. The huge ad-
vantage of word processors and spell-checkers is that they represent real interaction
between the user and the computer. Their disadvantage, of course, is that, ulti-
mately, they represent the mere mechanical storing and reproduction of minimal
units of language. The word processor itself is even language free (give or take a
few diacritics), a fact which demonstrates its conceptual emptiness; and the spell-
checker is, in its present avatars, nothing but a word list. The task for the future
is thus that of enhancing the substantive but excessively discrete areas of natural
language that computers can already cope with. One's awareness, however, of over
ambitious projects in all areas of computing, and the often even less justified claims

accompanying them, must incite one to a great deal of caution in predicting what
can be achieved.

Our next conclusion, therefore, was that the syntax/semantics distinction might
prove vital. On the one hand, semantics, with its strong links with philosophy, is a
highly contentious area, and contains very few indisputable assertions indeed. The
syntax of a given language, in marked contrast, represents a considerable body of
accumulated knowledge, in relatively uncontroversial form. Descriptive linguists,
who have often replaced the prescriptive ones in recent years, even have an ulti-
mate court of appeal as to the ‘correctness’ (i.e. existence) of a given ‘string’ of
characters: either submission to competent users of the language in question, or
comparison with pre-existing performance in that language. The set of all possi-
ble utterances in a language, in other words, is a well defined set; and so is that
of utterances which do not conform to the language. Ultimately, it may perhaps
follow that the distinction between the two sets may be susceptible to rule based
treatment; and therefore to treatment by machine based methods. At the same
time, syntax is obviously sufficiently broad and deep to present any munber of real

challenges for the future, in both applied linguistics in general and its subvariety
based on computers.

As far as CALL in particular is concerned, studying syntax could thus be a
reasonably precise area of research, while at the same time having the interest and
prestige of being a subject ‘on the cutting edge of human knowledge’. But in fact,
at least as important an advantage is that emphasis on ‘mere’ syntactic processes
is of course the substance of much foreign langunge teaching practice, even where
advanced students are concerned. Perhaps as little as half of the feedback process
is concerned with what the students ‘really’ wished to say, or, especially, write; and

Towards an Intelligent Syntax Checker 85

perhaps as much as half with ‘mistakes’ on the ‘surface’ level of spelling, grammar,
etc. Many of these errors are in fact on a surprisingly elementary level (3).

Our next piece of heart-searching took us into the more technical area of con-
sidering the choice of tools available.

2. Choice of Programming Language

Another reason why CALL and, more generally, artificial intelligence applied to
languages may be considered at a crossroads is the use of programming language.

BASIC is of course at present the lingua franca in many areas of both CAL and
CALL in the United Kingdom. The principal reason is accessibility: the language
itself is relatively easy to learn, and easy to use; and it is often included with
the micro-computer on sale. Amongst the many dialects, Acorn’s BBC-BASIC is
universally recognised as being second to none, to such an extent as to have been
adopted by at least one notorious arch-rival.

It was of course inevitable that computer purists, or puritans, should decree
that more necessarily meant worse, that making the arcane knowledge of the boffins
available to the masses was necessarily to adulterate it. The language community,
on the other hand, took the eminently sensible view that its interests did not always
coincide with those of other users, a view often encapsulated in disdain of ‘mere
number crunching’. Whatever the underlying reasons, BASIC has in fact proved of
inestimable worth to linguists as the standard language, and one can point to such
highly creditable achievements within it as Kenney and Kenney's A Vous la France!
(1986) or Farrington's Littré (1987) (4).

The disadvantages of BASIC have also been well rehearsed: in particular, its
unstructured nature which, even in the BBC dialect and in not untutored hands,
can sometimes lead to unwieldy programs which are difficult to read, and therefore

(3) Hares,R. and Elliott, G., (1982), Compo! French Language Essay Writing. Designed
for both secondary and university level students, Compo! reveals how often, in the
view of Hares and Elliott, essays are marred by elementary mistakes: the exam-
ples quoted (pp. 28 - 30) would seem to be approximately 40% pure spelling, 40%
pure agreement problems, and only 20% cases requiring further explanation. The
inescapable implication is that, in an overwhelming majority of cases, this formal
aspect is an area where computers are likely to be very shortly encroaching on that
of students’ competence.

(4) Kenney, M-M. and Kenney, M., (1986), A Vous la France!, BBC Publications; Far-
rington, B, Littré, 1987 version, Scottish Computer Based French Learning Project,
University of Aberdeen,

86 Computer Assisted Language Learning

also difficult to alter without the whole edifice beginning to crumble over one's
head. Other disadvantages can be slowness of reaction time, and, as we have seen,
limitations of memory in the machines on which it is normally implemented.

Amongst the alternatives we considered, therefore, was Icon, which is a modern
derivative of the string processing language SNOBOL. As such it was clearly suited
to language processing work. On the other hand, its use is at present largely limited
to the United States. Even if work is presently being carried out to 'port’ Icon
compilers to popular microcomputers available on the British market, we thought
it better to play safe, and avoid excessively eccentric choices.

This left as main contenders, amongst those programming languages used by
workers in the fields of Artificial Intelligence and Knowledge Engineering, LISP and
PROLOG. Both languages are essentially different from BASIC, in that they are
very ‘high level’ ones. In BASIC, a great deal of effort is expended giving detailed
instructions to the computer as to how to go about solving the tasks required.
LISP and PROLOG, in marked contrast, are ‘declarative’ languages: they merely
state, in duly standardised form, the nature of the task. In this way, the donkey
work of specifying the steps for solving the task is delegated to the compiler. The

result is much shorter programs, and, hopefully, more elevated and clear sighted
programining,.

Both languages are, again, suited to string handling; but here this built-in
capability exists on many different levels, in a way that models remarkably certain
features of natural language. Thus the main structure in both languages is the ‘list”:
a word may be defined as a list of characters; but then a sentence may be defined
as a second level list, a list of words; and so on. This sort of recursive possibility is
not, however, limited to such definitions. It may be invoked in general even within
the procedures, allowing them notably to invoke themselves. The result, as one can
imagine, is highly concise and elegant programs.

An excessive degree of elegance may here, however, be dangerous, in the sense
that abuse of recurrence leads to potential difficulties. Nevertheless, it is perhaps
not entirely too fanciful to imagine that this very danger is indicative of deep par-
allels between programming and natural languages, as brilliantly demonstrated by
Hofstadter (5). In particular, he claims that a) natural language is intrinsically
defined by its capacity to cope with the multi-level contradictions produced when
one allows formal systems to self-refer by embodying emblematic representations
of themselves and that b) this analogy between natural language and computing

(5) See Hofstadter, D.R., (1979), Gadel, Escher, Bach: An Eternel Golden Braid, New
York; Hofstadter, D.R., (1985), Metamagical Themas.

Towards an Intelligent Syntax Checker 87

languages may be very fruitful indeed for future research in such areas.

Choosing between LISP and PROLOG comes down to a number of possibly
ancillary factors. It is not our intention to arbitrate the fierce debate currently going
on amongst ‘pure’ computer scientists as to the intrinsic merits of each. But LISP
has the advantage of being more widely available, with more researchers proficient in
it, and more existing programs. Against that, it suffers, in our view, from a slightly

cumbersome syntax, a proliferation of brackets, which makes programs difficult to
read and to adapt.

PROLOG, on the other hand, is a more recent language. It was chosen by the
Japancse as the base language for their fifth generation computer projects. This is
possibly a sign of its inherent worth; but also a knock-on effect may be produced

in the future, and PROLOG may thus become one of the standard languages in
artificial intelligence.

More particularly, one can point to two particular advantages of PROLOG.
First, it has built-in pattern matching routines, clearly invaluable in the context of
repeated searches for given patterns of letters within words, and given words within
the text as a whole. Secondly, it has intrinsic modularity. It is therefore especially
suitable for not only building prototypes of systems quickly, but also, should this
seem useful, adding successive new stages to existing systems (6).

Ultimately the choice of language is determined by its ease and pleasantness of
use for a given purpose. (Literary trained scholars may therefore be more convinced
by appeal instead to Barthes's ‘pleasure of the text’, and his insistence on script-
abilité (‘write-ability’) and lisibilité (‘read-ability’).) For us, whatever the reason,
it was PROLOG, by half a head.

3. A Brief Introduction to PROLOG

[The aim of this section is to give some of the flavour of the PROLOG programming
language, by presenting a few concepts and examples. It is not, however, essential to
the understanding of the next section, which describes the project itself in essentially
practical terms. Some of the details of the PROLOG implementation itself are, in
addition, briefly described after the project.]

(6) PROLOG has a very strong compatibility with natural language processing. As just
one example, the syntax of some PROLOG compilers has even been extended to
enable a particular class of parsers, called ‘Definite Clause Grammars’, to be written
easily (Pereira, C.N., and Warren, D.H.D., (1980) “Definite Clause Grammars for
Language Analysis”, Artificial Intelligence, Vol. 13, p.231.).

88 Computer Assisted Langunge Learning

Any programming language for Al or expert systems must necessarily have
some internal means of representing knowledge. Ideally, a knowledge system will
include the following features:

1. a knowledge base, a set of facts and rules;
2. an inference engine, a system to reason with the given facts and rules;

3. an explanation facility, to explain to the user why the system has adopted
a particular line of reasoning;

4. user interface, to provide easy-to-use access; and

5. a knowledge acquisition system, a method for acquiring and encoding new
knowledge.

In PROLOG, the inference engine is explicitly provided, but great freedom is
accorded to the programmer in instituting the others!

The name ‘PROLOG’ means ‘Programming in Logic’. Basically, the program-
mer’s task is to state the problem in terms of defined facts and rules, these rules
being expressed as a ‘logical’ sequence of statements. A PROLOG program, then,
comprises a set of known ‘facts’ (the ‘database’), and a set of rules or relations
governing the facts, the two together being called the ‘knowledge base’. The system
solves a problem expressed in terms of a goal by attempting to prove the ‘validity’
(positive truth value) of this goal on the basis of the given facts and rules. Normally
sub-goals will be defined by the system, and then proved separately.

A very simple example may make this much clearer. At a first stage of so-
phistication, we simply wish to communicate to the system the present indicative
conjugation of the verb avoir:

avoir (ai).
avoir (as).
avoir (a).
avoir (avons).
avoir (avez).
avoir (ont).

These, then, are PROLOG facts, with aveir being called the ‘predicate’, and
ai, as, etc., the ‘argument’.

Towards an Intelligent Syntax Checker 89

If we wish to add further information, then we could write the following PRO-
LOG facts:

verb (avoir, ai).
verb (avoir, as),

verb (avoir, ont).
verb (&tre, suis).
verb (étre, es).

verb (&tre, sont).

[Read: ‘there exists a verb including parts avoir and af’ etc.|

Here we have defined a new predicate, called ‘verb’, and included the infinitive avoir
or élre as a second argument to this predicate.

Having given the system a reasonable number of similar facts, like other verb
conjugations and tenses, one can then interrogate the system. A question such as

verb (Inf, sommes).

asks the system to find an Inf (infinitive) such that semmes is part of the same
verb. (The system does not know, of course, that Inf means anything: for it, Inf
is just an unknown variable. The capital I on Inf, incidentally, marks it as being
a variable rather than a constant (which would begin with a small letter).) The
pattern matching facility of PROLOG is then invoked, the database is searched,
and the solution

Inf = étre

duly appears on the screen.

Turning now to an example of the rules, let us assume that some regular verb
stems and verb endings have already been read in, as follows:

90 Computer Asslsted Language Learning

reg.stem (parl).
reg.stem (port).

reg_stem .[nim] .
reg_ending (e).
reg_ending (es).

reg_ending (ent).

If we wish to tell the system now that a verb is in fact made up of a stem plus
an ending, we simply write the rule:

reg_verb (Stem, Ending):- reg_stem (Stem),
reg_ending (Ending).

[:- is read ‘such that’, and , is read ‘and’ (the logical operator).]

A rule, in other words, enables the system to generalise, to cope, in the present
example, with any regular verb. More generally, a rule is always of the form

Head:- Body.

where Head is what is being defined, and Body is what is already known, being
comprised of a predicate or predicates.

The power of PROLOG is of course that this process may be repeated as many
times as one wishes, so as to build up knowledge bases of indefinite complexity. But
even within the simple database of verb conjugations, one can imagine non-trivial
problems which could be quickly solved. Assuming that ‘all’ French conjugations
have been read in, one could then ask which verbs have an identical present and
passé simple. Ask the average human user, and you might receive the response ‘dit'.

Let us assume that the facts have been entered, for all verbs, in the form:

Towards an Intelligent Syntax Checker

verb (present, dit).

verb (passé-simple, dit).

and that a general rule has been indicated, of the form:

find (Tensel, Tense2, Part):- verb (Tensel, Part),
verb (Tense2, Part),
Tensel \ = Tense2.

(where \ = is the inequality operator).

Then a query of the form:
find (present, passé-simple, X).
would elicit the response:

X = dit

91

But then as many further instances as wished may be obtained by repeatedly

typing a semi-colon (;), which will give

X = ﬁru'!
X = choisit, etc.

Again, to enquire which different verbs have an identical part, and assuming that

the facts have been entered in the form:

92 Computer Assisted Language Learning

verb (past-subjunctive, crusse, croitre).

verb (past-subjunctive, crusse, croire).

together with a rule:

find (Inf1, Inf2) :- verb (Tense, Part, Inf1),
verb (Tense, Part, Inf2),

Infl \ = Inf2.
Then a query of the form:
find (A, B).
will elicit the response:
B = croire

A = croitre

In sum, PROLOG is a highly flexible and clegant language, one which is per-
fectly adapted, we believe, to processing natural language.

4. The Project

The project was a final year undergraduate Computer Science one undertaken by
J. Lim How, and supervised by J. Galletly (School of Sciences) and W. Butcher
(School of Humanities).

It was principally a pilot study into the development of tools for computer
assisted teaching of French language at the University of Buckingham. Desides
students taking French to degree level, Buckingham has numerous students taking
French as a supporting course from beginner's to post A-level standard. The project
was not intended however to be a pure CALL project, for two reasons: 1. students
are not especially orientated towards the theory or practice of teaching; and 2. it

Towards an Intelligent Syntax Checker 93

was thought that the results of the project would be of more interest if the system
exhibited some aspects of the general, open-ended use of language characteristic of
human communication, rather than simply leading the user through a predefined
and closed teaching situation. In other words, the system should demonstrate some
small degree of machine intelligence or expert knowledge. For the reasons explained
above, it was considered that the specific area of French syntax was sufficiently wide
as to allow a large number of interesting possibilities.

5. General Requirements of a CALL System

We list below some important general features which we believe any CALL system
should possess, The list is not exhaustive nor original. Barchan et al. (7), for
example, have expressed similar views: 1. the system should have some pedagogic
value and provide an interesting environment in which to learn; 2. the system
should provide quasi-immediate responses, users should not be kept waiting unduly
for system responses; 3. the error reporting should be helpful to the user, the
messages should be meaningful; 4. the system should correct user errors wherever
possible; 5. the system should accept free input, the system should be wide ranging
enough to cope with arbitary sentences and not confine the user to a narrow range of
input; 6. the system should be robust, user errors or unexpected answers should not
make the system crash; 7. the system should be capable of expansion, new ideas,
new approaches, new areas should be readily accommodated; 8. consequently, it

must not be idiosyncratic: it must use methods that are both transparent and
reproducible,

In the following sections, we provide a mainly practical and linguistic descrip-
tion of the project.

6. Area of Investigation

The human method of constructing sentences in a foreign language, at least at the
elementary and intermediate level, includes applying, implicitly or explicitly, certain
rules of grammar. It is this notion which we decided to use: instead of following the
traditional approach of parsing, we based the ‘syntax checker’ on various heuristics
about French grammar in certain selected domains. These heuristics or rules form
the ‘knowledge base’ of our system, with rules being applied to a French sentence
to see if the sentence conforms to them or not. Our method, then, is slightly
reductionist, but no more so than many accounts in textbooks.

Two closely related areas of French syntax which seemed compact enough for

(7) Barchan, J., Woodmansee, B., and Yazdani, M., (1986), “A PROLOG Based Tool
For French Grammar Analysis”, Instructional Science, vol. 14, pp.21 - 48.

94 Computer Assisted Language Learning

this project suggested themselves. These are
negation

and
object pronoun order in verbal phrases.

Both areas are regular enough to allow some sort of systematic treatment and
are also sufficiently different from their parallels in English to offer interest to non-
native speakers of French. Barchan et al. (1986) have pointed out research evidence
for the necessity of putting bounds on the learning area, only specific points of
grammar should be dealt with.

Negation
Negation has the advantage that the nine main operative words

ne ... pas, point, jamais, rien, plus, personne, nullement, guere

are morphologically invariant, with the exception of n’ being a variant of ne. On
the other hand, there nre major disndvantages. Although normally ne and one
of pas, point, jamais, etc., must both be present in the sentence, there are certain
exceptions. These include ne on its own, pas, point, etc., on their own, and cases
involving ne and ni in combination. There is also the situation where these words
are used as nouns or other parts of speech, for more than half of them, pas, point,
rien, plus, personne, are not necessarily negation words at all. In the event, due to
time constraints, we adopted the practical expedient of bypassing these problems,
and requesting the user not to be so perverse as to introduce such sentences as un
plus n'est plus plus qu'un rien!

The basic rules implemented in the program are as follows:

1. ne can be followed (but not immediately) by any negation word in a sentence.
There has to be at least one word (including a verb) in between. For example, Je
n'entends personne (‘I hear nobody’) is accepted, but Je ne personne is rejected.

2. pas and point in the same sentence are considered ungrammatical, as is a com-
bination of pas or point with jamais, rien, plus, personne, nullement and/or guere.
But a combination of two or more of this last list s allowed, provided that the same
negation word does not appear twice in the sentence. e.g. Je n'at pas point vu Paul

Towards an Intelligent Syntax Checker 95
is rejected, but Je n’ai jamais rien vu de pareil (‘T have never seen anything like it’)
is accepted. On the other hand, as explained above, ‘perverse’ sentences like Rien
n'est plus beau que rien are technically correct but are treated as errors.

3. rien and personne are the only negation words which can precede ne but in that

case they must do so immediately. e.g. Rien ne va plus! (‘No more bets please!’)
is accepted, but Rien va ne plus is rejected.

While these few rules are of course far from a complete description of negation
in French, they were found in practice to be sufficient to ‘trap’ many learner errors.

Object Pronoun Order

Verbs and their preceding pronouns, with optional negation, present a complex

but well formed structure in French, and one which conveniently supplements the
above.

Sequences of up to eight words can be dealt with by the system, which can thus
on occasion seem quite impressive. At the same time, seven of the words are from
very well defined categories, and there is little possibility of intervening words: two
advantages making the implementation much easier.

The various combinations possible are summarised in the following table, which
covers all indicative tenses, together with negative imperatives:

ne me le lui y en VERB pas

te la leur point

se les jamais

nous rien

vous plus
personne
nullement
guére

Of course, almost any or all of these words could be absent, The only necessary
element in the sequence is in fact the verb. Accordingly, our analysis of pronoun
order starts by trying to identify the verb in the sentence entered and, only when
this has been successfully carried out, examining the pronoun order.

This identification is a major problem. Various lines of attack might have been
possible here, including checking words against an existing dictionary, looking at

96 Computer Assisted Language Learning

the context of words in their surroundings and examining the endings of words.
The first approach was used by Barchan et al.: trailing characters are stripped off
a word until a morphological root is recognised in the dictionary. But the word-
ending approach looked the most interesting to us: the program would attempt to
locate a verb in a sentence by examining the endings of all the words. In the event,
we adopted the opposite method to Barchan’s, stripping off leading characters until
a recognisable ending appeared. Given that the longest endings were thus searched
for first, this had the advantage of identifying -tes as distinct from -es, as distinct
from -s.

Another problem is that, in some tenses, French verbs are in two main parts:
the auxiliary aveir/étre plus the past participle. Also other words, such as méme or
indubitablement may intervene before the participle. The solution adopted was to
consider the finite part of the verb as the operative part and to ignore the participles.
This decision is in line with speakers’ subjective impressions that the auxiliary is
the vital part, and it also obviates the problem of agreement of the past participle

(8).

As a first step, some highly simplistic rules for identifying verbs by their endings
were identified. We adopted the practical expedient of accepting the affirmative,
negative and imperative forms of the verbal phrase, but not interrogatives. (Infini-
tives may, of course, be present but are in any case ignored by the program, which
simply identifies the finite verb.)

The basic French verb endings may be summarised as follows:

1. words with endings -it, -ai, -as, -ez, -ais, -ait, -ent, -est, -ons, -ont, -iens,
-ient, are probably verbs

and

2. words with endings -a, -e, -3, -es, -1, -tes are possibly verbs.

It was decided, however, that these rules were of limited usefulness on their own:
many words which are not verbs have endings in -e, -3, -es, etc. Also, the distinction
possibly /probably would be very difficult to implement in practical terms. As one
way of alleviating the problem, the program was given some more information:

(8) Or past participles, as in the various forma of surcomposé, e.g. il a eu fait.

Towards an Intelligent Syntax Checker 9

1. a small dictionary containing some common non-verbs with the above enel
ings is searched before the verb rules are applied. A successful matching is then
ignored as a verb;

2. a dictionary containing the complete conjugation of three of the most com
mon irregular verbs, avoir, étre, aller, is also searched before the verb rules arc
applied. A word matching with a dictionary entry is taken to be a verb.

If the use of these two dictionaries does not work, the situation clearly becomes
more problematic. For example, there is the homonym problem: porte is possibly

a verb, le porte certainly is, la porte just possibly is, je la porte certainly is, and so
on.

In the event, we recognised that there is limited knowledge in the system and.
due to time constraints, instead of trying to identify the verb via further rules and
facts based, for instance, on the immediate grammatical context, resorted to uscr
interaction. Of course appealing to the human user reduces the autonomy of the
program. It does, nevertheless, increase the user’s involvement, which may be an
important consideration in an educational context. In these ‘awkward’ cases, we
have to assume that the user has some minimal knowledge of French syntax, i.c.
can identify whether a given word is a verb or not.

At this point, a major methodological problem became apparent. A given
sentence must, for our purposes, contain a verb, but it may contain, in fact, any
number of different verbs, and thus it is hard to know when to stop looking for
them. The solution adopted was to assess each word in the sentence in order, anel

not to attempt to define a ‘main’ verb. Some examples may make the different cascs
clearer:

J'ai déja donné (‘I have already made a contribution’)

Nous allons gagner la Coupe (‘We are going to win the Cup’)

Vivre est souffrir (“To live is to suffer’)

La musique adoucit les moeurs (‘Music makes for gentler manners’)

The first three are accepted as such, since the program recognises at, allons, and eat
as definite verbs. In cases like adoucit, however, the program announces to the uset
that the word is possibly a verb, and ask her/him to confirm it. In other words, by
means of progressively less elegant and autonomous, but more complete methods,

98 Computer Asslsted Language Learning

a verb is always identified. In theory, there are no situations where the machine
simply ‘gives up’.

The analysis of the pronouns proved considerably easier to implement. Use of
PROLOG means that the system can identify with relative facility the two negation
words and the various combinations of up to five pronouns. It can then check
whether the canonical order is respected. It finally either notifies the user of any
errors detected in the order of the words, or confirms that it has not detected any
errors of this sort. Thus

N’y va pas (‘Don’t go there’)
Il n'y en avait plus (“There weren't any left’) and

Je le lui donnai (‘I gave it to him')
are accepted.

Contrariwise,
Je lut le donnai

J'ai lui donne
are not accepted (9).

To sum up, then, what happens in terms of screen presentation: once a prompt
mark appears on the screen, the user can enter a French sentence. In certain cases,
he will be asked, successively, if certain words are verbs or not. Finally, the machine
issues a verdict as to its assessment of grammaticality (covering both the verb(s)
and the other appropriate elements of the sentence). It finally produces a prompt,
inviting the user to enter another sentence.

7. Further Details of Implementation

PROLOG is ideal for expressing the heuristics and dictionaries which form the
intelligence of this system.

The dictionaries are written as PROLOG facts, e.g. the individual negation

(9) It may be noted that the system does not pronounce on whether a given combination
makes sense. But this, in our view, is perfectly sensible. Cases like Je le lui en donne
or even Je ne le lui y en ai pas donné are at least perverse. The reason why native
or other competent speakers hesitate is doubt as to what nouns all the pronouns
could refer to. The problem is ultimately therefore on the semantic rather than the
syntactic level, and would thus seem counter productive for treatment by computer
based methods at the present moment.

Towards an Intelligent Syntax Checker 99

words are written as:

negation (ne).
negation (pas).

negation (guére).

When a sentence is read in by the program, individual characters are combined
to form words and the words are stored in a PROLOG list structure. Each word in
the sentence is then inspected in turn using PROLOG’s pattern matching facility
to access the dictionary until a word is recognised.

1. In the negation part, if a negation word is found, then the predefined negation

rules are invoked, to examine each of the remaining words in the sentence to see if
the sentence conforms or not.

2. In the object pronoun part, each word in the sentence is checked to see whether
it is one of the three irregular verbs. Otherwise leading characters are stripped off
the word one at a time and the resultant ‘stub’ compared with the verb endings in
the facts database. If a verb ending is recognised, then the user is prompted that
the word is either probably or possibly a verb. Once a verb has been asserted, then
the object pronoun rules are invoked to analyse the preceding words so as to check
that any object pronouns before the verb are both correctly formed and correctly
placed. Finally, either correction or congratulation messages are shown on screen.

8. Conclusion

This final year student project posed real and interesting problems; it also generated
a great deal of cooperation between the departments involved, and even produced
interest from other members of the University.

It was deliberately pitched at a relatively high level, since marketing the result
was not an aim and it was felt that the project might as well therefore tackle some
substantive area of French grammar. As such, it clearly required a highly heuristic
approach, one that may even seem to some people non-conventional, in contrast
with, for instance, approaches based on parsing. Also, some of the obstacles en-
countered could not entirely be removed within the time available, but had to be

100 Computer Assisted Language Learning

detoured around. Nevertheless, the fundamental aim was certainly met: that of
constructing a program which could accept a very wide range of input, and could
analyse it in terms of certain well defined grammatical constraints. Without re-
sorting to the brute force method of storing a large bank of predefined questions
and answers, a ‘semi-intelligent’ response is effectively obtained. More precisely,
the program provides the user with very quick, appropriate, and reasonably acen-
rate information in an interactive fashion, and this must surely be considered an
achievement in the notoriously slippery world of natural language.

This is not to say that the project does not have room for further improvement
and extension. It would be very useful, obviously, if sentences containing more
than one negative structure could be read in, like je ne marche plus et je ne cours
jamais. More generally, it is conceivable to use fuzzy logic to deal with cases of
‘possibly /probably a verb’ in a less cut-and-dried fashion. This would have the
additional advantage of being closer to what humans actually do when presented
with an ambiguous structure like sanctionner or je suts: they seem normally to
suspend final judgement, and seck further information in the subsequent words,
before ‘backtracking’ to the source of ambiguity.

In fact, certain cases of lexical ambiguity, if on a simple level, may be a fruitful
area for further computer based work. Cases quoted earlier, like porte vs le porte,
etc., are extremely context based; and, even for human users, often in practice pass
through a stage of hesitation, involving something like fuzzy logic. It would, never-
theless, be relatively easy for a given pair of homonyms, such as porte-porte, pas-pas
or even manoeuvre (m.) — manceuvre (f.), to undergo a process of ‘disambiguisation’
by means of certain key context pointers. Indeed, this is the most obvious failing,
and perhaps the easiest remedied, of the current generation of spell-checkers: their
limitation to single word analysis. The word itself for this, ‘syntax checker’, has un-
fortunately been trivialised by American programs that do little more than check for
odd brackets or typing errors like the the. Perhaps the next stage forward, for both
CALL and the business world, is prograins carrying out semi-intelligent analyses of
language: real syntax checkers dealing with real linguistic problems.

We will be the first to buy!

