next up previous
Up: Free textbook pdf Fundamentals Previous: 8.1 Given Two Angles,


9 Prandtl-Meyer Function

$\displaystyle \nu (M)$ $\displaystyle = \theta(M) - \theta(M_{starting})$ (112)
$\displaystyle %\nonumber
$ $\displaystyle = \sqrt{k+1\over k-1} \tan^{-1} \left( \sqrt{k-1\over k+1} \sqrt{ M^2 -1}\right) - \tan^{-1} \sqrt{ M^2 -1}$ (113)

$\displaystyle \nu_{\infty} = {\pi \over 2} \left[ \sqrt{k+1 \over k -1} - 1 \right]$ (114)



Genick Bar-Meir ||| www.potto.org
copyright Dec , 2006

The pdf version is also available here