next up previous
Next: 9 Prandtl-Meyer Function Up: 8 Oblique-Shock Previous: 8 Oblique-Shock

8.1 Given Two Angles, $ \delta $ and $ \theta $

$\displaystyle {M_1}^2 = { 2 ( \cot \theta + \tan \delta ) \over \sin 2 \theta - (\tan \delta) ( k + \cos 2 \theta) }$ (109)

$\displaystyle {2(P_2 - P_1) \over \rho U^2} = {2 \sin\theta \sin \delta \over \cos(\theta - \delta)}$ (110)

$\displaystyle {\rho_ 2 -\rho_1 \over \rho_2} = {\sin \delta \over \sin \theta \cos (\theta -\delta)}$ (111)



Genick Bar-Meir ||| www.potto.org
copyright Dec , 2006

The pdf version is also available here